
RD-i52 716 INVESTIGTIN AND IMPLEMENTATION OF
A TREE I/2

TRANSFORMATION SYSTEM FOR USER FRIENDLY PROGRAMMING(U)

NAVAL POSTGRADUATE SCHOOL MONTEREY CA M 8 CHOK DEC 84

UNCLASSIFIED F/G 9/2 U

.2.
01.

1111 11112
11111 -2.IIIII II8

S11111_25 IIIII 1-

MICROCOPY RESOLUTION TEST CHART
NATIONAL 130REALT (1F SIAN ARD Al

"0

S

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THSI

CT!
a..ccmer18

THESI
N sT(I'O:AN BrucEeN T I ON lm

.\h YRF RAN~SO MAIO SYS;T EMuin i IIIii

SECURITY CLASSIFICATION O)F THIS PAGE (Whenu Data Entered)

REPOT DCUMNTATON AGEREAD INSTRUCTIONSREPOR DOCMENTTIONPAGEBEFORE COMPLETING FORIM

I. REPOT NUM2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TIT LE (end Subtl Its) S. TYPE OF REPORT & PERIOD COVERED

Investigation and Implementation of a Master's Thesis
Tree Transformation System for User December 1984
Friendly Programming 6. PERFORMING ORG. REPORT NUMBER

7. AU~THOR(s) S. CONTRACT OR GRANT NUMBER(&)

,Mohamed B. Chok

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK

Naval Postgraduate School AE OKUI UBR

Monte rey, California 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School December 1984
MontereyClfri 34 13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & ADDRESS(If differenit from Controlling Office) IS SECURITY CLASS. (of lti report)

UNCLASSI FIED

15a. DECLASSIFICATION, DOWNGRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution is unlimited

17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20. It different from Report)

IS. SUPPLEMENTARY NOTES

19 K E e WORDS (Continue on revrse side If necessary and Identify by block numaber)

template, concrete transformation rule, abs trac t t rans f ormat ionl
rule, al stract tree, tree transformation, tree pattern match-
ing , interpreter, synthes izat ion, term rewrit ing syst em,
appl icat ion progzramming, funct ional programming. -

20. ABSTRACT (Continue on reverse stde if neceseary end Identify by block num~ber)I

The progrzamming system (TTPS) described in this thesis is based onl
tree transformatio)n techniques, comonly known as abstract trans-
f o rmat ion. The objects manipulated by the user through ~F'S e
the templates, the transformation rules, and the programs. Thlle
temp lates dlef inc thle svntact ic and semant ic Ilnguage,1 framlework
which w ill he used to pa rse aind unpa rse both thle rules; and the
proLr;.m trees-. The rules define the semantic behavior- of thle

tran s Iormait io n 1)roc e ss._ The pro(,r:ifl represent.,;~ j(on ute

DD I r 7 1473 EDITION OF I NOV 6S IS OBSOLETE

N 010?- LF O014-6601 1SECURITY CLASSIFICATION OF THIS PAGE (Mon Date EnterodI

SECURITY CLASSIFICATION OF THIS PAGE (When Data E nfere

.\BSTRA CT (Cont inued

source tree which describes the problem to solve, and will he
interpreted by a sUCCeS iVe appl icat ion of the suppl ied rules

until they no longer apply.
'TTPS" provides an appropriate environment for a large class of
applications (e.,. systen programming, code generation, structure
transformation, simulation of syntax directed editors, and other
conventional applications), and supports many programming styles
such as functional programming, conventional programming, and
use r defined style. -7 .

ST

2SECUR9ITY CLASSIFICATION 0F THIS PAGE(W1PIen Data Entered)

by

•A .

Mohamed B. Chok
Captain, Tunisian Army NT IS "

DTIC Ti';

Submitted in partial fulfillment of the
reguirements for the degree of --..4

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

* NAVAL POSTGRADUATE SCHOOL
December 1984 /

DC

Author:- NPC(
"U '

Approved by:----

e77T n_ead___

B 7uc? 7 enn LThan
Department of Computer Science

Dean of Information ani licy Sciences

3

ABST ACT

The programming system (TTPS) described in this thesis

is based on tree transformatioL techniques, commonly known

as abstract transformation. The objects manipulated by the

user through "TTPS" are: the templates, the transformation.

rules, and the programs. The templates define the syntactic

and semantic language framework which will be used to parse

and unparse both the rules and the program trees. The rules

define the semantic behavior of the transformation process.

The program represents the source tree which describes the

problem to solve, and will be interpreted by a successive

application of the supplied rules until they no longer

apply.

"TTPS" provides an appropriate environment for a large

class of applications (e.g. system programming, code genera-

tion, structure transformaticn, simulation of syntax

directed editors, and other conventional applications), and

supports many programming styles such as functional program-

ming, conventional programming, and user defined style.

I4

TABLE OF CZNTENTS

i. INTRODUCTION 12

A. MOTIVATION, VIEWPOIN7 12

B. APPROACH 14

II. DESCRIPTION OF THE PROGRAMMING SYSTEM AND ITS

E NVIRONMENT 16

A. GENERAL 16

B. DEFINITIONS 16

1. Template 16

2. Transformation Rule 17

3. Programs 19

4. Tree Matching and Variable Binding 20

5. Synthesization and Tree Substitution . . . 29

6. Built-in Templates and Rules22

C. DESCRIPTICN OF TYPICAL PROGRAMMING

SCENARIO 22

1. Templates Creaticn 22

2. Rule Constructions 23

3. Writing the Progiams 23

4. Program Interpretation 24

D. REQUIREMENIS SPECIFICATION OF THE

PROGRAMMING ENVIRONMENT, TOOLS DEFINITION . 24

1. Specifications Description 24........2

2. Environment Tools 31

3. Integration 31

4. Implementation Ervironment 32

III. SYSTEM DESIGN 33

A. THE USER INTERFACE 33

5

-- ,- -- - " . r .
%

. -. , -/ - -- o .7- -7 . - . . -- - rJ o . W J- -,. - - \ • - -

1. Description 33

2. Module Selection 34

3. Getting Help35

4. Ending the Sessicn 35

5. Error Handling 36

B. THE TEMPLATE EDITOR 37

1. General Description 37

2. Starting the Temjiate Editor 40

3. Command Interpreter 40

4. Help 0..................40

5. Operations on Teaplate Lists 40.......

6. Operations on Templates 56

7. Exiting the Template Editor 63

8. 'Builtin Templates'63

C. CONCLUSIONS DRAWN FRCM THE DESIGN OF THE

TEMPLATE EDITOR 65

D. THE RULE EDITOR 67

1. General Description and Module

Architecture 67

2. Starting the Rule Editor 67

3. The Command Interpreter 67

4. Lists Manipulaticn 68

5. Rule Manipulation 74

6. Getting Information on the Current

Rule 84

7. Exit the Rule Editor 84

E. THE PROGRAM EDITOR 85

I. Using the Prograa Editor 85

2. Program Lists o.85

3. Exiting The Program Editor 87

4. Limitations and Constraints 87

F. THE iNTERPFETER 88

1. Locating the Program List 88

6

2. Locating the Program 88

3. Creation of the iesult List and

Program Copy 89

4. Program Transformation 89

5. Displaying the Result and the Rules

Applied 95

6. Saving and Printing the Result 96

7. Applying the Built-in Rules 97

8. Exiting the Interpreter 99

IV. CCNCIUSION 100

A. DESIGN ASPECTS 100

1. The "Undo" Feature 102

2. The Modification Facility 103

3. Summary of the System Extension 106

B. SYSTEM EVALUATION ANr USES 108

1. General Applications 108

2. Other Specific AEplications 110

3. Limitations and Constraints 114

APPENDIX A: USER'S GUIDE TO TTPS (A TREE

TRANSFORMATION PROGRAMMING SYSTEM) ... 119

A. INTRODUCTION 119

B. TYPING THE COMMANDS 119

C. STARTING THE SESSION (TTPS) 120

D. GETTING HELP (HELP) 120

E. SELECTING A MODULE 120

F. ENDING THE SESSION (QUIT) 120

G. USING THE TEMPLATE EEITOR 121

1. Built in Template 121

2. Open a List (OPEN LISTNAME). 121

3. E.-X.t a List (EDII LISTNAME STARTING

POINT) 121

4. Direct Insertion (INSERT PLACE OF

IN[SERTION) 123

7

5. Saving a List (SAVE FILENAME LISTNAME) 123

6. Restoring a List (RESTORE FILENAIE

LISTNAME) 123

7. Removing a List (REMOVE LISTNA4E) . 124

8. Merging two List- (MERGE LISTNAME1 +

LISTNAME2 = LISTNAME3) 125

9. Listing the Template Lists (LIST) . . 125

10. Inquire About the Current List and

Template (CURRENT) 125

H. USING THE RULE EDITOR (RULEDIT) 125

1. Built-in Rules 126

2. Open a Rule List (OPEN LISTNAME) . . . 127

3. Editing a Rule List (EDIT STARTING

PLACE) 127

4. Direct Insertion (INSERT PLACE OF

INSERTION) 130

5. Saving a List (SAVE FILENAME) 130

6. Printing a List cn a Disk File (PRINT

FILENAME) 130

7. Restoring a List (RESTORE FILENAME

LISTNAME) 131

8. Inquire About the Current Rule

(CURRENT) 131

9. Ending the Rule Editor (EXIT) 131

I. USING THE PROGRAM EDITOR 132

J. USING THE INTERPRETER (INTERPRET) 132

1. Exit the Interpreter (EXIT) 133

LIST CF REFERENCES 134

BIBLIOGRAPHY 135

INITIAL DISTRIBUTION LIST 136

... ". " :.i ," .: -' .:..-..:8•

LIST OF 1ABLES

I. Format of the Command Edit 42

II. Error Types and the Corresponding Messages for

Edit 44.......................'44

III. Format of the Command Save 45

IV. Error Types and the Corresponding Message for

Save 45

V. Format of the Command Restore and System

Responses 48

VI. Error Types and the Corresponding Messages for

Restore 49

Vii. User System Dialogue befcre a File is Opened . . . 52

VIII. Formats of the Command Remove and System

Responses 53

IX. Error Types and the Corresponding Message for

Remove 54

X. Formats of the Command Merge56

XI. Error Types and the Corresponding Message for

Merge 57

XII. Formats of the Informaticn Message for Current 57

XIII. Dialogue for the Reinitialization of an

Existing Rule list 70

XIV. Messages for the Current Command 84.........814

XV. Built in Rules 98 -0

_I

9-

LIST OF FIGURES

3.1 General Architecture of the System 34

3.2 Architecture o- the Template Editor 38

3.3 Printing of a Template File 46

3.4 A Typical Editing Session 62

3.5 Listing of the Built-in Templates 64

3.6 Architecture of the Rule Editor68

3.7 Printing of a Saved Rules File 73

3.3 Piettyprinting of a Rule File 74

3.9 Example of Rule Insertion 78

4.1 'The Templates for Case Transformation 114

4.2 Concrete Transformation Rules for Case . . .115

4.3 Abstract Transformation Rules for Case 116

A.1 Example for Inserting a Rule 129

10

ACKNOWLEDGEMENTS

I would liku to express m sincere appreciations an I

gratitude to my thesis Advisor, Professor 5rucc J.

MaccLennan, who suggested this tcpic, constantly contrihuted

to thE development of the thesis, and s~ent much of his time

guiding my research and readinj the drafts of the thesis.

Thanks jo to my Second Reader, Professor Gordon H.

Eradley, not only for the reading of the final draft, Lut

also for his assistance provided to we to select the topic,

and for his helpful criticism.

wish to think all the personnel in the Computer

Techinology Curricular Office, and in the International

Coordinator Education Office, for their constant interest,

care and encouragement throughovt the course.

Special thanks arE due to my wife Hajer, and my children

Hamed and AVmen, for their urderstanding, support, and

pa tie nce.

11

List manipulation

Since templates will be grouped by lists, there-

"- w Itred facilities to manipulate the list of templates

b;,±wloie. That is, ojerations to save, restore, remove,

,.i Lriit the template lists. It is also useful if we can

,j, two lists of templates which, for some reason, have

.te" c1:eated separately, or perhaps by diffeLeat useLs. To

, tr-orm such operations, the system should Le able to handle

alter nat ively several lists simultaneously present in the

neaory. This, of course, will increase the complexity of

t. e system., since the system and the user have to keep track.

of wlicn list and template are currently being edited. In

addition, we need facilities to move from one list to

another as well as for getting information about the current

situation. We think, at this stage, it is to early to

predict all the implications this might have on the design

of the system and the command languages. Thus, this idea

needs to be investigated more Lased on the analysis of the

above tradeoffs.

h. creating and editing the rules

Editing rules includes operations such as inser-

tion, deletion, modification, displaying, and printing. A

set Gf rules constitutes a list which, can be manipulated by

the user as a whole. Therefore, the system should provide

facilities to create, save restcre, display, and print the

rules lists. Also, we may need to merge two lists, there-

forLe we have to design the system so it can handle several

lists of rules present simultaneously in the aemory.

Howtver, this will depend on the results of the experimenta-

tion of the corresponding idea uith the templates.

25

4. ProQram Interiretation

Having completed the abcve steps, the user can Low

attempt the interpretdtion of his programs on2 at a time.

When the interpretation is comjieted the system will auto-

matically unparse and display the result. In addition, if

the user desires, the resmilt can be saved, or printed on a

disk file.

D. REQUIREMENTS SPECIFICATICN OF THE PROGRAMMING

ENVIRONMENT, TOOLS DEFINITICN

1. §aecifications Description

Based on the typical scenario in the previous

section, we now extend these ideas and investigate in more

detail the environment which will support the user at each

phase of the programs development process.

a. creating, and editirg templates

template manipulaticn

Earlier, we described a template as a combina-

tion of key words and place holders with a variable length.

Therefore, when entering a template, we need a means to

notify the system abcut the end of the template text. In

addition, each template must have a name which will consti-

tute its access key. Thas, we need a tool which suFForts

tnese properties and provides a collection of utilities to

create, access, and edit the teaplates.

Editing templates includes all conventional

operations such as insertion, modification, deletion,

displaying, and searching.

24

2. Rule Constructions

Cnce the necessary templates are created, the user

needs to create the transformation rules which describe the

permitted tree substitutions. Each rule includes two parts,

the analysis and the synthesis. Both parts are constructed

using the templates created in the previous step. Thus, the

user is not required to memorizE the structure of the temp-

late. Instead, he issues a rEquest for the template usinj

its name, and the system will provide him with a ccly of

this template showing him (in inverse video) the place

holders he must fill.

The place holders are indexed by a number followed

by a letter. The number reprEsents the level of nesting,

which in fact corresponds to the height of the tree. The

letter represents the position from left to right within the

same level. The system keeps asking for more input until

all the place holders are filled at all levels. When this

requirement is satisfied the system will automatically
signal the end of tree construction, ind jive the prompt for

the next step.

3. Writinq the Proqrams

Programs are constructed and written in the same way

rules are. However place holders can now be filled by

either another template or a data value (i.e. numeric

constant, or litteral constant). In fact, we use this

system to enter programs and rules in a way that is very

similar to asing a syntax directed editor to write conven-

tional programs.

During one session the user can write many programs

giving each one a different namE. All the programs together

constitute a list which, as we will see, can be processed as

a whole.

23

6. Built-in Temrlates and Fules

a. builtin templates

Builtin templates are an integral part of the

programming environment. They are provided to define the

structure of the built-in rules. Thus, when the user wants

a builtin rule to be applied to a part of his program, he

must use the appropriate built-in template to construct this

part of the program.

b. built-in rules

Builtin rules are basic rules which can be

applied to the program in the same way the user rules are

applied. Like built-in templates, they are integrated in

the system so they can be directly and efficiently applied

to the a -er program.

C. DESCRIPTION OF TYPICAL PROGEAMnING SCENARIO

In this section we present a typical scenario describing

te different steps to construct a program and its environ-

mental context constituted by the templates and the rules.

1. Templates Creation

In this first step the user creates the set of temp-

lates necessary for his application. These templates will

constitute the syntactic and the semantic framework to Farse

and unparse both the rules and the programs. Each template

will have a unijue name, and a body composed of a combina-

tion of key words and place holders (i.e. double dashes).

The set of temjnlates can constitute one or several lists.

22

I

I

And given the following rule:

concrete form: x expo m * x expo n ==> x expo m + n

abstract form:

tempmult tempexpo

tempexpo te pexpo x telpadd

x m x/ n mz n

Since the analysis part of the rule matches the

"TEMPMULT" subtree, the program will become after synthesi-

zation as follows:

concrete structure: factorial 7 expo 3 + 4

abstract structure:

tempfact

tempexFo

7te p ad d

3 '_ 4

with x, m, and n bound respectively to 7, 3, and 4.

Note that the concrete form does not tell us in what

order we evaluate the different operations. Therefore, we

need more specifications if we want to have a correct inter-

pretation of the concrete rules. On the other hand, the

order is explicitly represented in the abstract structure of

the rule.

21

4. Tree Aatchinq and Variahle Bindinj

Tree matching is done by comparing a program sultree

with the abstract representaticn of the analysis part of the

rule. As this process goes, the variables of the analysis

will be bound to the values given in the program, uhich may

be single constants or a whole subtrees.

The variables and their bound values will form the

context which will be used during the substitution of the

program subtree by the synthesis part of the rule, but only

if the matching had succeeded.

5. Sy1nthesization and Tree Substitution

Then a match occurs between the program subtree and

the analysis part of a given rule, we will proceed to the

replacement of this subtree by the synthesis part of the

same rule. In this process the variables will be replaced

by values to which they are bcund in the context created

during the matching process. We will refer to this opera-

tion as the synthesization. For example, given the

following program:

concrete form: factorial x expo 3 * x expo 5

abstract form: tempfact

0 tentmult

tem pexpo te pexpo

* Z 3 xz 4

20

they don't have any semantic meaning for the system. 7his,

of course, has many advantages, such as to reduce the space

to store the trees, reduce the time necessary for the

matching process (i.e. less nodes to be matched), and elimi-

nate a class of errors resulting from a difference in the

spelling of these key words in the rules and the programs.

As we said earlier, both the concrete form and

the abstract form of the rules are constructed via the temp-

lates. That is, the parsing and the unparsing of the rules

is made more systematic. For example, from the if template

the system knows that the corresponding tree will have a

root referred to as "tempif" and three sons. Also, given

the same tree, it will be able to construct its corre-

sponding concrete form, by filling the place holders of

* "tempif" with the values of the sons from left to right.

3. Proqrams

Like transformation rules, programs have two forms,

the concrete form and the abstract form. The concrete form

is a prettyprinted text consisting of reserved words and

constants (i.e literals and numbers). The abstract form is

a tree whose main root and subtree's roots are names of

templates, and whose leaves are constants. The two examples

below illustrate a concrete form and its zorresponding

abstract form.

concrete form factorial 7 + 5 * 3

abstract form tempfact

t EMadd

Stepmult

5/ 3

0

19

0

The two parts are separated by a double arrow to make the

rule more readable. in our system, we will use the concrete

form just to provide the user with a more convenient and

natural representation of his atstract rules. The following

are examples of concrete transfcrmation rules:

examplel: factorial n => if n=0 then 1 else n*fact n-1

example2: x expo m * x expo n ==> x expo m + n

b. abstract transformation rule

Abstract transformation rules are the same as

concrete transformaticn rules except that they describe the

permitted tree substitutions. Thus, the replacement process

is done using the kncwledge of the abstract structure of

the tree via the templates used to construct these trees.

Like concrete transformation rules, abstract transformation

rules have two parts. The analysis part represents the

source tree, and the synthesis part represents the target

tree, that is, the one which will replace the program

subtree when it matches the analysis part of the rule.

Using examplel given for the concrete rule, we

now represent it abstractly as follows:

tempfact tempif

temp eu 1 tern mult

nn tempfact

telpsub

* n 1

Notice that key words don't appear in the

abstract tree because, as we will see later, they don't play

any role in the matching and synthesization process since

II

-- 18

| . ,

a. role of the templatE

The role of the template is to define the

concrete and the abstract models for the basic structures we

will use to construct the rules and the programs. They will

also Frovide a means for the user to construct syntactically

correct rules and programs. That is, in some way, templates

describe the grammar for the language used to write the

rules and the programs. Each template is referred to by its

name, which must be unique within the list of templates, so

the user and the system can identify it without ambiguity.

The following are templates which are going to be used as

examples for the rest of this chapter.

template name * tesplate text

tempif * if -- then-- else -

tempfact * factorial -

* tempadd *-- 4 -

* tempsub *

* tempmult -- * -

* tempequ *

* tempexpo *-- expo *

2. Transformaticn Rule

a. concrete transformation rule

Concrete transformation rules describe the

permitted rearrangements of symbols and string substitution

without using any semantic knowledge of these symbols. Each

rule has two parts. The left part, called "analysis",

describes the source string of symbols. The right part,

called "synthesis", describes the target string of symbols.

17

II. DESCRIPTION OF THE PROGRAMMING SYSTEM AND ITS

ENVIRON MENT

A. GENERAL

In this chapter we will define the objects on which the

user and the system will operate, then we will present a

typical scenario of the different steps for developing

programs, and finally we will describe the specifications of

the programming environment and define a collection cf tocls

which will be investigated and partially implemented.

B. DEFINITIONS

1. Template

A template, in our system, is a predefined formatted

pattern of symbols. it comprises key words and place

holders. Key words are used to improve the readability;

place holders identify the lccation of variables to be

filled when a copy of the template is used to construct the

rules, or the programs. Thus, key words affect only the

concrete forms of the rules and programs, while place

holders affect both the concrete and the abstract forms.

For example, two of the possible models of a conditional

statement can be written as:

IF -- THEN -- ELSE -- or as: IF -- THEN , OTHEEWISE

IF, THEN, ELSE, OTHERWISE represent key words and the double

dashs represent the place holders. Notice when the template
4 is instantiated place holders can hold copies of other temp-

lates, thus, providing an unlimited level of templates

nesting. Notice also that both forms of the "if" template

are semantically identical, only the syntax is different.

16

*I

these suggested tools to determine the kind of functions and

facilities they should provide including an analysis of the

design tradeoffs. We will examine the interaction between

the modules of the system and to what extent they must be

integrated, the style of communication between the user and

the system, and how flexiblity and friendliness can be

achieved. We will also discuss some of the implementation

aspects and describe briefly how the system is actually

implemented. Finally, we will conclude the thesis with a

discussion of the possible use of this system, its limita-

tions, and we will suggest what we think might be useful

extensions.

15

I.I

Such a programming system does not require the user to

have any kind of previous knowledge of a language syntax to

write programs. Instead, he will be able to define his ow%

language syntax by means of the templates. For example, a

french speaking user might write the template "si -- donc--

autrement -- " to describe an if statement, while a mathema-

tician would prefer to write it as:

if -- , -- otherwise".

The templates, together with the transformation rules,

make it possible to write programs in one form and have them

printed in another form. For example a user can enter

arithmetic expression using infix notation because it is

easier and more natural, and the system will output the

expression in postfix form for evaluation or other uses.

Yet, although it is not our main objective, we can use this

programming system to translate a program written in a

special syntax to a legal form of a given language, or to

convert one program structure to another one (e.g Pascal

case statement into its equivalent sequence of if state-

ments, or a while structure into a repeat structure etc.).

In fact, we can imagine many other applications; However,

in the last chapter we will discuss in more details the

possible uses and advantages of this programming system.

B. APPROACH

Our approach for the development process of this

programming system and its environment will consist in, a

first step, to define the different objects on which the

user and the system will operate. In the next step, we will

define and describe the different phases for developing tree

transformation programs and suggest what we think might be

the appropriate tools which will assist the user at each

phase. In the next, step we will investigate each one of

14

The modern programming environment has evolved from

interpreters, compilers, and common operating system, to

include more sophisticated and elaborate tools such as:

syntax directed editor-, structure editors, debuggers, auto-

matic program generators, pretty printers, file system coor-

dinators and others. Programming environment systems have

become an important area of research because of theiL direct

impact on all areas of computer science such as software

engineering, programming languages, and artificial intelli-

gence. Thus, programming systems are no longer evaluated by

the language alone, but by the entire environment in which

programs are developed.

In this thesis we will investigate and implement a

friendly programming system based on tree transformation

techniques, commonly known as abstract transformation. In

fact any language structure can potentially be represented

as an abstract syntax tree (e.g. expression, control state-

ment, input/output statement, declaration).

Tree transformation can be viewed as the replacement of

a tree, or a subtree, by another one according to the trans-

formation rule (i.e. using pattern matching and substitu-

tion). The description of the replacement process via tree

transformation is often easier, shorter, and intuitivly

clearer than even a description in natural language, and

permits the expression of explicit structures (i.e. does not

require parsing). Yet for a wide class of transformation

rules, this translation can be automated, thus providing a

means for compiling abstract structures into functional

programs [Ref. I).

Abstract trees, representing both rules and programs,

are constructed (i.e. parsed) and printed (i.e. unFarsed) ,

using what we call templates, which define the syntactic and

the semantic structure of the concrete and abstract form of

the rules and the programs.

13

I-

- - -,--. -. - ~ -------.- -..-. - -- ~.-- - - - . -.- .- -.- -. .- -, o., .L.- o .-

I. INTRODUCTION

A. NOUIVATION, VIEWPCINT

Although high level languages permits the writing of

programs in a form more convenient to human beings,

programming is still a rather difficult task, which requires

a lot of training. As a result, access to the comFuter

remains more or less restricted to a class of trained

personal, who can do the necessary coding and debugging.

Extensive research has been done to find new ways to

make programming systems more friendly, more flexible, and

easier to learn and use. Thus, during the last decade, we

* have witnessed the development cf new classes of programming

system such as: object oriented languages and applicative

programming.

Along with this research, Feople are focusing more ind

U more on user friendly man machine interfaces and programming

environments.

Manmachine interfaces can be viewed as tools, which

enable the users to communicate with a computer in a

friendly, flexible, and easy way, often using formatted

natural language to present the information to the computer

in order to make it perform specific tasks. This view holds

that natural language interfaces miyht be appropriate for

people who have a high level of semantic knowledge in a

problem domain, but aren't familiar with, or are ur.willing

to learn, a formal computer language.

Programming environments are a collection of automated

* tools, which provide assistance to the programmer in the

different steps of the program development process (i.e. the

life cycle).

12

c. accessing the rule

Like a template, a rule is referred to by a

unique name. However, in this case the name is not as

important because it is used just to ease and shorteni thp

search during the editing of the rules, to show the trace

during the interpretation, and to avoid printing the entire

rule.

The alternative solution would be to access a

rule either by its position within the list, or sequen-

tially, or by pattern matching. This solution seems to be

more flexible, but it will result in a more complicate!

implementation without a lot of gain, because very cften the

list of rules will not be very long, and the user can give

meaningful names to the rules such that it is easy to

memorize them . Nevertheless, it is still possible for him

to access the rules sequentially.

As described earlier, the body of each rule

consist of the analysis part and the synthesis part. Every

time the user wants to insert a new rule, the system will

ask him to enter the name, then the analysis part, and

finally the synthesis part.

d. constructing and parsing a rule

At this point, it seems opportune to emphasize

the role the templates will play during this step. In fact

they constitute the foundation of the programming system

because they will guide the user in writing the rules, and

the system in constructing the abstract trees, unparsing

them, and displaying the concrete form of the rules. Each

time the user request a copy of the needed template, while
writing the rule, the system will assist him by showing the

structure of the template, with the place holders high-

lighted (e.g. in inverse video), and indexed as described in

26

4

the previous section. At the same time the system prepares

a copy of the corresponding abstract tree (which it already
knows through the template), and starts filling the nodes

with the values entered by the user at the right moment and

places. Thus, it is unlikely that the user can omit

providing the value of a place holder (i.e. node for the

abstract tree). Also there is no way for the user to

construct incorrect or incomplete structures because the

system will not continue, and will keep asking for more

values until satisfaction is obtained.

e. unparsing and printing the rule

This approach will also help the user to have a

clear idea about what will be the structure and the shape of

* the abstract tree, things which may later facilitate the

debugging of the rules. However, in practice, common users

prefer to see a rather more readable and natural form of the

rules. Thus, it is necessary that the system can unparse

the abstract form and display a prettyprinted concrete

form. This process is quite simple and straightforward,

since all the system has to dc is to get the appropriate

template and just fill the place holders in the same order.

However this raises some problems to be considered care-

fully. For instance, suppose that the user makes some modi-

fications on the template affecting their structure, or

completly delete some of them. Obviously,the system will

not be able to unparse the tree, or may even give a

completly unexpected concrete fcrm.

The situation is similar to the mine expert who

tries to take the mines out of a mined field with a modified

plan. Of course we can imagine what will happen.

Therefore, it is important that the user provide the system

with the appropriate set of templates during the unparsing

process, and if he modifies then on purpose (e.g. to change

27

0

the order of the place holders, or improve the readablity),

he must be sure that this does not create an inconsistency

between the abstract tree and the structure of the template.

However the system must assist the user, and tell him when-

ever it detects such inconsistercy, or give a special signal

when the appropriate template is not found (e.g. precede the

unparsed subtree by a special character).

f. Writing, and editing the programs

Programs are created and written in the same way

as the rules are, except that a program includes only one

part.. Like the rules, programs have a concrete and an

abstract form. The concrete form is what the user can

display and see on the screen or printed on the paper. The

abstract form is the corresponding tree constructed by the

system at the same time the program is entered by the user.

The program is built up by putting together

basic subtrees. The structure of these basic subtrees is

given by the copy of the template, explicitly requested

(i.e. using its name) by the user, and whose place holders

are filled with constants, variable names, and other temp-

late names.

The advantage of such approach is to simFlify

the parsing process, since the abstract tree is constructed

in parallel with no scanning and token recognition required.

Also, it will guarantee that only correct programs are

entered, because the systen will show the template
requested, and the user is required to fill all the Flace

holders. Thus we can think of the templates as a grammar

for the language and we are using a syntax directed editor.

Programs can be modified, displayed, saved and

restored, prettyprinted on disk or on paper, and deleted.

It is also useful that the user can move around the

different parts of the program such as to go from a subtree

28

to another in the same level, zcoming in and out, searching

for a given node, and altering the value of a node, espe-

cially during the debugging process.

g. interpreting programs

Programs are interpreted in their environmental

context constituted by the templates and the rules. Thus a

given program can be interpreted differently in different

contexts. However the interpretation process itself is

independent of the context. It consists in the successive

applications of the user's and the builtin transformation

rules.

The order of selection of the rules is seguen-

tial. However, conceptually the order in which they are

selected and applied should he irrelevant to the final

result of the transformation. A rule is applied to the

program when its analysis part matches a subtree of the

program. This will include: the matching itself, variable

binding, synthesization and substitution.

The interpretation will end when no rule can be

applied, then the result will be displayed. In addition, it

should be possible fcr a user to request that the result

will be sent to a disk file, so it can be printed or reused

for further transformation with a different set of rules.

During the interpretation the user might be interested in

having the trace of the transformation, therefore the system

must provide an option which allows visualizing the names of

the applied rules and the intermediate results.

h. debugging programs

In order to assist the user in debugging his

programs, we need facilities which make it possible to show

the rules applied for the transformation, and to perform the
interpretation step Ly step, or until a given rule is

29

47

applied, or a given situation arise, or a condition is met.

The system should be able to answer specific questions, such

as which rule is never used, or the number of times a given

rule was applied, or why a given rule can not be applied to

a given subtree of the program (i.e which nodes cause the

failure of the matching process). The system must also

detect some classic errors such as undefined node, nonnu-

meric argument for arithmetic operation, and other type

checking. If an error occurs during the interpretation, the

user is informed so he can stop the process, dsk to show the

A result, or alter the value of a node and ask the system to

continue.

i. communication language

Users communicate, via the screen and the

keyboard, to the system by issuing commands using formatted

natural language.

A command can be written on one line, or broken

into a sequence of short subcommands. Thus the system will

keep asking for additional information until it is able to

execute the command or issue an error. This approach is

based on the fact that a user who is familiar with the

system will be able to handle long and complex commands,

while a new user would prefer to be guided by the system,

and see the same commands broker into a sequence of subcom-

mands. No matter what the user types he should get a clear

answer. Also, helF must be proposed each time the user

seems confused. Thus, at one extreme a user can memorize the

entire ccmmdnd, and at the other extreme he needs just to

know the name of the command or even just to request help.

Help must be provided at the different stages, but only the

relevant information should be given, because it is often

difficult for the user to fird the information he needs

within several pages cf displayed help.

30

2. Environment Tools

Our goal is to design an interactive programminj

environment which supports the programming system and meet

the specifications described in the previous sections. Thus

we will investigate, design, and partially implement the

following tools:

1. A template editor

2. A rule editor

3. A program editor

4. An interpreter

5. A debugger

3. Inteqration

It appears from the specifications that the

different modules of the system are closely related with a

lot of interactions. Many resources will be commonly

shared, such as templates (used bjy all the modules), rules

(used by the rule editor and the interpreter), programs

(used by the program editor and the interpreter). many

functions will be used by more than one module (e.g parsing

and unparsing the abstract trees, searching for a giving

rule or template, loadin and unloading lists of templates

rules and programs, d[d many other utilities).

In addition, we think it is important that users can

switch hack and forth between modules in an easy style

without being forced each time to do the necessary file

loading and unloading, and all the other routines to get the

module started.

In my opinion we need an integrated system wnich

provides enough security to prevent the user from making

unrecoverable mistakes, and which gives clear and simple

traffic indications so the novice will not lose his way

through the modules. In summary, a secure, friendly, and

flexible integrated environment.

31

4. Implementation EnvironmEnt

Our system will be iaplemented on the PDP11/730

running a Unix system. We will use the Pascal larguage

utilizing the Berkeley compiler. However, in order to main-

tain a certain portability, we have used only standard

feat ures.

32

Ic III. SYSTEM DESIGN

Figure 3.1 represents the general architecture of the

programming environment. The sclid arcs represent the data

flow, while the broken arcs represent the control flow.

The environment is built up out of a number of modules

and files. The modules are the template editor, the rule

editor, the program Editor, and the interpreter. The files

are provided to hold the templates lists, tie rules lists,

the programs, and the results of the interpreted programs.

Note that, except for the template lists, for each catejory

of list we need two files: one for the abstract form used

exclusively by the system during the load operation, and the

other one for the prettyprinting of the concrete form which

provide a readable ccpy for the user and can be printel

using The UNIX command.

A. THE USER INTERFACE

1. Description

The user interface is the first layer of access to

the system. Its function is to initialize the different

pointers to the lists, load the built-in templates, provide

a general help on how to use the system and navigate between

the mcdules, give the prompt to the user so he can select

the module he needs, and finally to make sure that every

thing created or modified during the session has been either

sdved, or approved to be destrcyed before the user can exit

the system.
0

33

V- -j

USER INTERFACE

LIS

EDTO Is~ LIT NEPEE

I =I 1ASTATASRC

COIBT IN E EI

PRGRM RUL

Figure 3.1 General Architecture of the System.

V0

2. Module Selection

Once the prompt (-->) is given the user may select

running either the template editor, the rule editcr, the

program editor, or the interpreter, by typing the name of

the module. These are, respectively: TEMPZDIT, _ULEDIT,

PGMEDIT, and INTERPRET. After the selection is made, the

user interface will give control to the selected module.

3. Gettinq Heljp

The user interface provides a general, simplu help

facility which gives user the essentials about the functio

of the system, how to select the appropriate module, and Low

to exit the system. This help may be obtained by typing the

HELP ccmmand. However, for the user's convenience, the

system will offer help at the beginning of the session or

whenever an incorrect command iE entered.

4. Ending the Session

The user can end the session and exit the system by

typing the command QUIT. But, as a security measure, the

system will check if there are lists of any kind created or

modified during the session but not saved. If such lists

are found, the system will display the names of these lists,

and ask the user whether or not he wants to save them. A

"NO" answer will confirm the quit and causes the systen to

terminate. On the other hand, if the answer was 11YES" the

system will re issue the prompt signal, but it remains the S

responsiility of the user to save these lists by using the

appropriate command offered by each module.

An alternative solution would be to let the system

make the save automatically when the user answers "yes".

But, there are at least two reasons why this solution is not

preferable.

3
35

S

First, the user might not need to save all of these

lists, Lut the system can not make such a decision unless

explicitly told by the user. This will involve an Extra

interaction between the sistem and the user, which turns out

to be the same as the first solution.

Se-cond, and most important, the system will use the

list name as file name, which can have a bad consequence,

since any old file with one of these naes will he automati-
cally rejlaced by the new one, while the user may still need

it.

in our design, as we will see later, the user will

be given the choice to assign the name of the list to the

saved file (i.e. overwrite the old file), or give a new

name (i.e. create a new file). This allows him to have a

family of files for a given family of applications.

We think the first solution is more flexible, more

secure, and even in some cases more efficient.

5. Error Han dli n

An error occurs when the user types an incorrect

command. That is, a command other than tempedit, ruledit,

pnjmedit, interpret, help, or exit. In that case, the system

will echo the input command and print in inverse video the

error aessaje. It will also offer help to the user and

reissue the prompt signal for a restart. For example:

"temped: incorrect module selection"

"for more information please type help"

1

36

B. THE TEMPLATE EDITOR

1. General Description

Figure 3.2 represents the architecture of the temp-

late editor. The module is made of 11 functions which

operate either on the list as a whole entity or on indi-

vidual templates.

As we can see, many lists can be present simultane-

ously in the memory. However, The system and the user will

edit one list at time (i.e. the current list). The user can

switch back and forth between the different lists in an easy

style with no load or unload required. The possibility to

work alternatively on several lists in the memory adds more

power and flexibility to the system. Lists or part of lists

can be developed in parallel, perhaps for different applica-

tions. Yet, we will be able to take two lists, created by

different persons, partially change them, and merge them to

form a unique list to be used for a new application. This

facility can also be helpful during the debugging process

where we might need to try different versions of the same

templates to decide which ones give the best results.

As a consequence of this design decision we need to

include in the system features to keep track of which list

is currently edited, what are the lists currently present in

the memory, and for each one what is the current template.

We need also facilities to move from one list to another and

to remove a list from the memory. This also will repuire

more checking and security measures anI will result in more

complex commands since each time we rejuest an operation on

a list we have to specify explicitly or implicitly (i.e. by

default) on which list we want to perform these operations.

Of course we could decide that all ojerations

requested will be done automatically on the current list,

but then we lose the flexibility advantaje because the user

37

S !A 7 TEXI T

COMIANJD INIERPRETEP

LuFNFHL P Is T

LIST 1
r p HN I IN S E

LIST 2

bESI07E SAVE M1EGH

Fi1jurP 3.2 Archtetcture ot the 1i2plate Editor.

38

I

will he required to use an open command ii, order to set the

list he wants as the current onE. This turns out to he ir

the user's view equivalent to a load, which we want to

avoid.

In our system we will experiment with both

approachs. That means we will implement the template editor

such that we can have several lists in the memory, and

implement tie rule editor with the possibility of havinj

only one list at a jiven time.

To keep track of which list and template is heinj

edited, the system will maintain two pointers. The first

one points to the current list, the second points to the

current template within the list. The current list will be,

the last one processed by any operation requested by the

user, except for remove, where the current list will become

the next list, or "nil" if the removed list -as the last.

Likewise the current template will be the last 3iie inserted,

or displayed, or the one which follows the last one deleted,

or "nil" if the one deleted happened to be the last temlate

in the list.

The initial value of these pointers is "nil".

However the system should be able to distingjuish between an

end of list "nil" and the initial "nil" (i.e. empty list),

and make it clear to the user by giving an appropriate

messaje such, as "current template is nil: list is empty" or

"current template is nil: end of list reached". At any

momeiit th* user may iniuire about the current list and tc:,nj-

ilt k, or about what are the lists currently in tYe mEmor'v

wit" tlhe number of templates each one contains.

The lists which are created or modified durin 9 thu

session must Le protected against accidentdl deiutioi.. This

protection i.; removed as soon as the list have ben saved.

39

0

Nevertheless, to prevent the user from acciden-

tally removing a list created or modified during tne cu.rert

session lut not saved, the SystEm will check the upd, e fia

of the jiven list, and in consequence it iay issue a warning

message and give the control Lack to the user so hE can

abandon the operation or confira it.

Table VIII shows the different formats of the

command and the resulting diaiogue between the user and the

system.

S

TABLE VIII

Formats of the Command Remcve and System Responses

format 4 1 *

* REMOVE <LISTNAM E>

format # 2

REMOVE *

* input listname to remove: <IISTNAME> j CR *

* the following dialogue will take place if *

* the given list to remove has not been saved] *

S~WARNING! <listnaME> has not been saved

do you want to continue yes/no : YES I NO

* (a "no" will cause the abandon of the ojperatioi. *

* (a "yes" will let the system remove the list]

error checking

Before starting the execution the system will go

through series of controls to determine if the command can

Le executed pro urly. The types of error which might recsult

53

TABLE VII

User System Dialogue before a File is Opened

* *

* WAENING ! if no such Zile exists the system will alort *

and the content of the following list(s) will be lost *

* (listing of the lists not saved } *
* #

* do you wish to save them yes/no : YES I NO *

* f a "yes" answer will cause the abandon of the restore *

* operation so the user can use the command SAVE to *
* *

* save the lists he wants and restart the operation J *

* (a "no" answer will confirm the reguest and let the *

* system attempt to open the file and hopefully respond *

* <listname> restored from file : <filename> *

e. removing a list

This utility will allow removing a list from the

memory, and freeing the occupied space. This function may

not appear very necessary since lists which are no lon~er

needed may simply be ignored and not saved at the end of the

session. But, in an integrated system like in our case,

needs for memory space grow so rapidly such that a memory

clean up becomes necessary.

Thus, without this utility, the only way to

remove lists which are no longer needed and to make the

space occupied available, is tc save whatever we will still

need, exit the system, and start all over again with a clean

and reorganized memory space. This, of course, will cost

much more time than executing a simple2 commanil.

The command to execute this function is:

R7OVE, followed optionally by the name of the list to be

removed. However, The system will remove the current list

when no name is specified.

52

conclusion

It seems clear that the first solution cifers

the maximum flexibility and security. There is no possi-

tility for the user to lose the control or the content of

the memory because of a misspelling in the file name. But,

in turn it rejuires more work to be implemented, and extra

time for the execution of the function, since the system has

to check the directory, even if the user had input the

correct file name. Also, this solution will not be general

because the routine will not work in a different environment

with a different directory organization.

The second solution requires less work but it

does not provide the maximum security since, from experi-

ence, we know that users get very quickly tired of warning

messages and stop giving them any attention which, in this

case, may cause the loss of important information and hours

of work.

The third solution offers enough security evein

though we can still lose the ccntrol, but since this will

happen only at the beginning of the session there will be no

loss of memory content. But, on the other hand, it will lut

some inconvenient restrictions, and could be a time

consumer.

In our system we will use the sezond solution

because it represents a reasonable compromise bEtween the

efficieicy, the amount of work for the implementation, the

flexibility, and the security. Also, it is a general solu-

tion which will work if the system is run in a different

environment.

Table VII illustrates the interaction between

the system and the user for the second solution.

51

• . . .

• solution 2

The second solution would be to let the system

save automatically the lists created or modified during the

session before it attempts to open the file. Thus, if the

user loses the control because cf an open failure, he will

be able to use these file copies for backup.

Although this solution is feasible, it will

affect considerably the efficiency of the function and may

perhaps encourage the user to be careless when he enters the

command. Therefore it is preferable to make the save rather

optional. That is, when the user requests a restore opera-

tion the system will send a warning message to remind him

about the possibility of losing the control, and ask him if

he wants to save the lists created during the session. The

user can either accept the offer and save the lists he wants

to, or change the file name if it was incorrect, cr confirm

the command in which case the system will go ahead and

attempt to open the file.

. solution 3

The third solution requires the user to declare

at the teginning of each new session the files which are

likely to be loaded. Thus, there will be no risk resulting

from losing the control since there is nothing in the memory

yet.

The problem is that the user has to know in

advance the input files he will use, which is not always the

case. Also, he will not be able to restore files created

and saved during the session unless he exits the system and

starts all over again, which is not practical, and may take

a rather long time to do.

50

TABLE VI

Error Types and tbe Corresponding Messages for Restore

* error type * error message *

missing sjace*
~* missing space after the template name *
* after t.name * *

*------------------ *--
missing ':' * missing colon after the template name *

missing siace* *

~* missing space efore template text
before t.text*

----------------------------------- -- *

eof reached *
* * unexpected end of file *

but no escape* *

file name, or save whatever hr has in the memory and exit

for more checking, or simply abandon the operation and start

a different task. Unfortunatly, this solutio presents some

difficulties due to the implemertation environment.

First, in the Berkeley Pascal environment, it is

not possible for a user's program to get back the control

when, d "reset" fails. Instead be will get an error message,

but the control is automatically returned to Unix without

having the chance to save the content of the memory.

Second, Pascal, like most languajes, does not

provide an instruction which allows one to check if a file

exists Lefore we attemlt to open it.

Therefore, in order for tne solution to work, we

must write 6 speciai routine. This routine will read the

directory and return a flag which can Le tested to find out

whether or not the given file exists, dn] sut sejien tly

eitht-r attempt the open, or issue an orrjr mresaje Lut

return the control back to the krojram.

49

TABLE V

Format of the Ccmnand Restcre and System Responses

*format # *

* RESTORE <FILENAME> <LISTNAE>

* format # 1 ***

* *
* RESTORE <FILENAIIE> <ITAE

* input listname or cr if using same name:<LISTNAME> CE.*

* *

* format #2 *3
**

* RESTCRE *

* *

* input filename: <FILZNAME>
* input listname or cr if using same name:<LISTNAME> j CR*

**

* th following dialogue will take place if the lists *

**

already exists*

* *

* iWARNING o <iistname> already exists in the memory
*

*
do yo watt*vrrt te/o:YSJN

* th ol"no" the system will continue the dialogue l *

**

* do you wish to give another name yes/no: YES NO *

* { if yes the system will ask for the new name] *

* input listname:<lSTNAME>

* [if no the system will abandon the request } *

solution 1

The first obvious solution to this zase would be
to issue yn error message inicating that the filE does not

exist on the disk, and then give the cntrol bck to the

user, so ho can either wiestlrt the tommnd with the right

* 49

d. restoring a list

This utility allows the user tj i: i., tk,
memory files containing templates. The commdni . i i Cd.]:.,

the execution of this function is: RESTORE tollowed Lv t:tc

name of the file (filename), followed Ly the nar tu bf-

assigned to the list in the memcry (listname). The name of

the list may be omitted in which case the name of the fil:

will be assigned to the loaded list. However, if the name

has been already assigned to an existing list, the systei

will give a warning message and wait for a response from the

user who may either order to overwrite the old list, or jive

another name, or quit for further investigation.

Table V summarizes the different formats of the

command, and the resulting interaction between the user and

the system.

files created using other editors may be loaded

Files created using editors other than the temp-

late editor (e.g. ex) may also be loaded by the restore

command. But, in that case, it is the responsibility of the

user to make sure that the files have the appropriate strac-

ture the system expects to find. Therefore, files which are

no+ formatted the way we have described in the previous

subsection will cause an error during the loading, and the

abandonment of the operation.

Table VI shows the different error types which

may occur during the restore operation with the corre-

sponding message which will be sent to the terminal.

As we notice, we did not include in the table

the case where the specified file is not found on the disk.

The reason is that we are faced with many alternatives to

deal with this problem. In the rest of this subsection we

will present these solutions, and discuss the advantages and

disadvantages of each one.

47

V

the list and its templates in the memory during the loading.

This structure will be a simple mapping of the memory list

onto the disk file. Thus, template files will have a name

which includes a maximum of 10 characters, and will contain

the tcmplates in the order of input.

Each template is coaposed of 10 characters name

(if necessary completed by trailing blanks), followed by the

body written like a conventional text, but terminated by the

character escape. Figure 3.3 shcws a sample print of a temp-

late file.

tempeval : eval--

tempexpo : -- expo--

tempif : if - then -- else --

tempfact : factorial--

tempmult : -- * --

tempadd :-- +--

tempsub

tempdiv -- --

tempequal -- = --

tem~less :-- <--

tempgreat :-- >--

tempevcon : evalcon

Figure 3.3 Printing of a Template File.

Notice that we have inserted a blank, a colon,
and another blank between the name and the text to make the

separation clear and the file mcre readable.

46

TABLE III

Format of the Command Save

format #1

SAVE <FILENAME> <LISTNAME>

format # 2

SAVE <FILENAE>

* enter the name of the list: <LISTSAME> I CR

format # 2

* SAVE

enter the name of the file: <FILENAME> | CR

enter the name of the list: <LISTNAME> I CE

TABLE IV

Error Types and the Corresponding Message for Save

error type * error message

no list * *
* can not save:nc list in the memory *

in memory *

* list does *
~* <listname> : is not found
* not exist *

----------------------------------- --- *
current * can not use current list: value is "nii"i

list is nil * please use open to set current list

structure of the template file

A template file must have a structure which

allows the system to reconstruct easly and systematically

45

TABLE II

Error Types and the Corresponding Messages for Edit

error type * error message

no list in *
* no list has been created or restored

the memory * *

list does *
* <listname>: list not found

not exist *

--------------*

empty list * <listname>: list is empty only
* insertion is allowed

----------------------------------- ---
*template does *
S<templatename>: template not found

* not exist *

-------------- --------------
current list * current list is nil use the open

is nil * command to set the current list

default values as respectively the current list and the name

of the list. That means, if the file name is not specified

the system will assign the name of the list to the new file.

Table III shows the different fcrmats of the command.

At the end of the execution the system will give

a message to indicate that the function had been performed

properly. In addition, it will print the name of the list

saved, the number of templates it contains, and the name of

the newly created file. Example:

"listl contdining 12 templates saved as filel"

if, on the other hand, an error was detected the

command will not be executed, and the user is notified with

the appropriate error message as indicated in table IV.

1

L4L4

S

• Preliminary controls

Before starting the editing session the system

will go through series of controls to check if the given

list and template exist, if the list is not empty, and if

the current template is not "nil" (i.e. end of the list

reached). When no error occurs as a result of these

controls, the system will ackncwledge the request and print

a header with the name of the list and the number of temp-

lates it contains, and then start the session by displaying

the template which corresponds to the starting point. To

exit the edit mode we need to Iress the escape key, which

will return the control back to the command interpreter.

However, if the system detects an error during

the preliminary controls, it will echo the command and print

an error message as indicated ir table II.

c. saving a list

In order for the user to have a permanent copy

of his lists of templates which can be reused or printed, we

need to have a function which allows him to save a list on a

disk file in readable and prettyprinted form. Therefore,

saving a list will be a quite similar process to the display

except that we need tc write all the templates of the list

starting from the first one and finishing at the last one.

The command to execute the function will be

simpler than the edit command, since all we have to specify

is the name of the list and optionally the name of the file,
if for some reason we want a differeat name (e.g. a file

with the same name already exists and we don't want to over-

write it). The syntax of the command is: SAVE followed by

the file name and the list name.

Both the name of the list and the name of the

file may be omitted. In that case, the system will take the

43

name of the list and the starting point for the editing.

The ccmmand can be typed on one line or broken into a

sequence of subcommands controlled by the system, which will

assist the user by asking for the remaining information

needed to execute the command. The name of the list can be

omitted in which case the system will take the current list

as default value for the name of the list.

The starting point of the editing can be the

first template of the list, the last template, a user speci-

fied template, or omitted, in which case the default value

will be the current template of the list. Table I summa-

rizes the different formats of the edit command. The inputs

are shown in capital letters while the system responses are

written using small letters. We will use this same notation

to represent the dialogue between the user and the system.

TABLE I

Format of the Command Edit

format # 1

* EDIT <LISTNAIIE> FIRST I IAST I TEMPLATE I CR

S... edit mode ...

format # 2

* EDIT <LISTNAME>

* enter starting point: FIRST I LAST I TEMPLATE I CE

* ... edit mcde ...

* format # 3

* EDIT

* enter listname to edit: <LISTNAME> # CR *

* enter starting point : FIRST I LAST I NAME CR

* ... edit mcde ..

*--4---

create a new list or locate an existing one. It is up to

the system to determine which, depending on whether the list

already exists or not.

Opening a new list will involve the following

actions:

. Create a new list entity

* Assign the given name to the list

. Set the template counter to 0 (i.e. list is empty)

* Set current list = the new list

Set current template to "nil"

Locate an existing list will involve the following actions:

. Set current list = the given list

. Set current template = first template of the list

or "nil" if the list is empty

List names can contain from 1 up to 10 printable

characters, which seems to be a reasonable size, and can be

changed easly if it happens to be insufficient. Notice that

it is not possible to have two lists in the memory with the

same name.

The function will be executed by the command

OPEN followed by the name of the list. Once the command is

executed the system will issue cne of the following message:

1. <listname>: new list created (i.e. list did not exist)

2. <listname>: contains x templates (i.e. list found)

3. <Listname>:illegal name (i.e. contains nonprintabie char)

b. editing a list

The role of this function is to start the

editing session on the given list. Editing will include

operations such as: insertion, deletion, search, modifica-

tion, and displaying. All these operations will be

performed on templates, therefore we will describe and

discuss them in more details in the next section. The

editing mode is started by the command EDIT followed by the

41

r r

2. Starting the Template Editor

C The template editor is given control by the user

interface when the command TEMPEDII is selected. The mcdule

will display the prompt signal (TE-->) to inform the user

that he can start entering the commands.

3. Command Interpreter

The role of this function is to accept the user's

command, identify it and immediatly transfer the control to

the appropriate function for analysis and execution.

However, if the command is nct recognized the following

error message will be sent to the screen:

"<Command>: is not a template editor command

please restart, or type.help for more information"

4. Help

The user may ask for help, at any time the prompt

signal is displayed, by typing the command HELP. However,

like it was explained before, only the part concerning the

template editor will be displayed, so it will be easier for

the user to locate the information he needs.

5. operations on Template lists

In this section we will describe the different

facilities provided to manipulate lists of templates as a

whole entity. Also, we will describe the format of the

* different commands we will use to execute the differEnt

functions.

a. opening and locating a list

This function will allow the user to initialize

a new list or locate an existing list and make it the

current one. Basically, we will use the same command to

40

from these controls with their corresponding messages are

given in Table IX.C

TABLE IX

Error Types and the Correspcnding Message for Remove

error type * error message

no list in *
* * can not rewove:no list in the memory

the memory *

--- *
list does *

* <listname>: list not found
not exist *

--- *

current is * can not use current: value is "nil"

* nil * use open to set the current list

f. merging lists

This function takes two lists and JErMs a unit

one by simply concatenating the second list wit% *Le liust

one. Thus, it is possible tc have 'JPl icatO tCjI tt: L:,

the resulting list which of ccurse shoull :,)t iq< ai!iiW '.

However, instead of stoppinj tht' InrEa E J ,.r-ti).. I- ()' A.,

a duplicate is found, the systeL wIL -,t,

displaying the name of the]u 1i .t, , it. it I

continue until the merging is ccjmpIt i. t ,.

the responsibility of the usi t ti! , ,t.

* action to eliminate these duplicat*:.

The command to ext.cut , 11. ;1. ,

MERGE. Following tUie name of tb om,iin I, t V kv. , v¢

54

i°

the namcL3 of the first list, second list, and the resulting

list. Like the other commands, these names may he omitted

in which case the system will take by default the current

list for every nonspecified list. However, in any case the

first list and the second list must already exist, while the

third list can be either a new list, or an old list to be

replaced. The latter case is treated as an overwrite.

Thus, the system will jo through the same kind of interac-

tion with the user tc get, if necessary, the confirmation

for the overwrite.

The different formats of the command with the

system responses are shown in Table X, while in Table XI we

summarize the different types of error which may occur

during the controls preceding the execution of the command.

g. listing the template lists

This utility function will give the user the

listing of the template list currently present in the memory

with the number of templates each one contains. However if

there is no list it will display the message:

"no list in the memory"

the command for this utility is: LIST

h. inquiring about the current position

very often, after hours of work with the system,

the user may get confused about which list is the current

one. Thus, the system provides a utility function which

gives him such informations, and even tells him about the

current position within a list. The command to request this

information is: CURRENT. The system will respond by one of

the messages given in Table XII.

55

L"

TABLE X

Formats of the Command Merge

* format #1 *

* MERGE <LISTNAM E1>+<LISTNA E2>=<LISTNAME3> *

* format # 2 *

* MERGE <LIST NAME 1>+<LIST NAME2> *

* input listname3: <LISTNAME3> CR *

* format # 3 *

* MERGE <LISTNAME> *

* input listname2: <LISTNAME2> j CE *

* input listname3: <LISTNAME3> ICR *

* format # L *
* *

* MERGE *
* input listname*: <LISTNAME>

* input listname2: <LISTNAME2> *

* input listname3: <LISTNAME3> *

* (listing of duplicate templates found } *

* <listname3>,containing x tezplates created *
. * :*

6. Operations on Templates

In the previous section we described and discussed

each of the operations which can be performed on the temp-

late lists as a whole entity. In the present section we

will do the same thing for the template as an individual

object. That is, we will describe the facilities -rovided

to manipulate separately a single template.

First of all, we need to mention that all these

operations will be executed on the templates of the list

56

TABLE XI

Error Types and the Correspcnding Message for Merge

error type * error message

no list in *
* can not merge:no list in the memory

the memory *

----------------------------------- -------------------------------------- ---

listl or list2 *
S* <listname> nct found

not in memory*

------------------ --------------- --------------------------- *

current list * can not use current list is "nil"

* is nil * use "open" tc set the current list

* *---

TABLE XII

Formats of the Informaticn Message for Current

* message type 1 *

4<template name> in <list naze>

message type 2 *

* "nil" <list name> is empty *

message type 3 *

* "nil" end of list <listname> *

currently edited, except for the insert operation which may

he requested independently on the current list. Thus,

before starting the insertion, we may need to set the

current list as the one we will be inserting in. This can

57

be done explicitly using the open command or implicitly by

means of the commands RESTORE, SAVE, EDIT, or MEEGE since

these commands have the side effect of opening a list and

setting it as the current one.

a. displaying a template

As we said earlier, the editing session will

automatically start by the display of the template corre-

sponding to the starting point. Each template is displayed

name first followed by the body, which may include any

number of characters. Thus the text can be printed on

several lines formatted in the same way they have been when

entered by the user.

The user may either continue to display the

templates sequentially by pressing the return key, or alter

it by giving a new starting point in the same way we have

described for the options in the command EDIT (i.e. first,

last, or a template name). Also, these same options are

available when the end of list is reached.

b. insert and append

Many editors treat insertion and appending as

separate cases. In our system we provide a unique utility

L because appending is no more than a special case of inser-

tion which happens either at the beginning or the end of the

list. Thus, what will make the difference is Either the

option provided explicitly with the command, or the current

position during the edit mode.

direct insertion

The fact that the template editor knows which is

4 the current list and where is the current position within

the current list even when not in editing mode, with the

fact that we are able to reference a template by its name,

58

* " . •- .- .

makes it possible to do a direct insertion without being in

the editing mode. However in such case the user must

specify the place where to start the insertion (i.e. at the

beginning, the end, before a given template, or before the

current template).

This view holds that very often, the user knows

exactly where he wants to insert, therefore there is nc need

for him to waste the time searching the place of insertioi

(i.e to set the current template) by using the display

facility.

• insertion from the editing mode

It also Fossible tc insert new templates while

in editing mode. In that case we are not required to

specify the place of insertion since it will be autznati-

cally assumed before the template currently displayed, or at

the end of the list if it was the current position. Thus,

the user can switch back and fcrth from the display mode to

the insertion mode.

The command for insertion is: INSERT followed

optionally by the place of the insertion. The place of

insertion can take the same values than the starting place

in the edit command (i.e. first, last, a template name, or

omitted when before the current template).

Note that when the list is empty, the system

will automatically start inserting at the beginning of the

list except when a template namE was given as refererce for

the place of insertion. In that case an error will occur

and a message will be printed to indicate that the template

was not found. Also, when nc place is specified and the

current template is "nil" the system will start inserting at

the end of the list. In any case before the user can enter

the new templates the system will notify him by a message

where the insertion will be. Thus, the user can say "OK

59

that is what I wanted", or if that was not what he expected

the insertion to be, he can simply abandon the request by

pressing the escape key.

entering a new template

Entering a new template will require the user to

input first the name, than the text of the template. The

name must be unique, and may contain up to 10 characters

ended by the return key. An error will occur if the name

entered has been already assigned to an existing template,

or when the name begins with a digit or a double quote

(later will explain the reascn of these restrictions).

Also, when the user inputs more than 10 characters for the

name, the system will simply truncate to the tenth position.

On the other hand, the text of the template may include any

number of characters terminated by the key escape.

ending the insertion

The end of the insertion will be notified by

pressing the escape key in the Flace of the name. Thus, the

last two characters of the insertion should be filled by the

escape key. The number of templates inserted will be auto-

matically displayed, and depending on whether the insertion

was requested from the edit mcde, or independently, the

template editor will switch back to the edit mode, or to the

command interpreter.

c. deleting a template

Template deletion will be done only during the

editing mode using the subcommand DELETE. Thus, the user

must display the template before he can issue a delete oper-

ation. This will provide more security since the user will

see the template and have a final checking before he can

delete it.

60

. i , . • " .: , [," , .6 0'i

Once the operation is executed, the system will

automatically display the next template, which becomes the

current one. However, if the deleted template was the last

one in the list, the system will signal the end of file and

set the current template to "nil". In that case, we may

either restart the display, or simply exit, as it has been

explained in subsection 4d.

d. searchini for a template

During the edit mode, it is possible to search

for a given template by simply typinj its name. When found,

the template will be displayed and becomes the current one.

However, if not found, the system will print an error

message and return back to the previous situation.

e. 'a typical editing session'

Figure 3.4 shows a typical editing session where

we have two templates inserted (tempfact, tempexpo), one

deleted (tempadd), and five displayed (tempif, tempeval,

tempadd, tempsub, and tempdiv). Also, the figure shows a

successful search for a template (templeval), and another

search for a template (tempi) which failed.

f. modifying a template

In our system, the cnly way to modify a template

is to delete it and insert in its place the new one. This

decision is based on the tradecff between the frecuency of

modification, the average length of the template, and the

complexity resulting from including a facility to modify

partially a template with the effect that will have on the

implementation. Nevertheless, we must admit that it is very

unpractical and unconvenient to be forced to perform a

delete and an insert just because we want to make a small

61

', , - .. - . o 6 , ° - o " ' - . - . "

I
rI

1
EDIT TEMPLIST1 FIRST

templistl contains 5 templates *

tempif : if -- then -- else --

tempeval : eval--

tempadd : -- +
DELETE

.... tempadd deleted

tempsub
INSERT

. insertion mode.....

.... insertion before tempsub

input name: TEMPFACI

input text: FACTORIAL -- "ESCAPE"

input name: TEMPEXPC

input text: -- EXPO -- "ESCAPE"

input name: "ESCAPE"
2 templates inserted

back to display mode....

tempsub :

tempdiv : -- /--

"end of list reached

restart or escape tc exit": TEMPEVAL

tempeval : eval--

TEMPI

.... tempi not found

"ESCAPE"
.... edit terminated
templist 1 now contains 6 templates

TE-->

Figure 3.4 A Typical Editing Session.

62

1
1t

modification on a given template. Therefore, we 3uggest the

incorporation of a more elaborate and flexible facilities to

modify, including things such as: pattern substitution,

string insertion, and concatenation.

7. Exitina the Template Editor

The template editor will terminate by the command

EXIT. The control is then returned back to the user inter-

face without any further investigation. That means the user

is not required to save the lists when he exists the temp-

late editor, even if those lists have been created or modi-

fied during the session. The zeason is that it is still

possible for the user to return back to the template editor

for more work on the templates. In fact this situation of

switching back and forth between modules will be very

frequent during the debugging and the development of the

application. Thus, it is better to delay the control until

we are sure that we have the last version of the templates

(i.e. when the user asks to exit the entire system).

However, it would he better practice to save the lists

before we switch to another module, just in case (e.g. we

lose the control because of an infinite loop in the inter-

pretation of the program

8. 'Built in Teum.lates'

As we said in chapter 2, the system provides a set

of builtin templates which are loaded at the starting of 0

the session, and are grouped in a list called "BUILTTEIP".

These templates are listed in Figure 3.5

The first 8 templates defines the structure of the

analysis parts of the built _in rules. Thus, if the user -

wants a tu1*.lin rule to be applied to his program he must

use the appropriate builtin template either to construct

63

- - -_ -- I
+!

/ -- I -- I

eval eval -- I

errorl error: left arguseLt- is not numeric

error2 error: right argument is not numeric -

error3 : error: arguments are not numeric -i

error4 error: operands are not compatible --

Figure 3.5 Listing of the Built_in Templates.

the concerned part of his program so the builtin rule can

he matched against this part, or to built the synthesis part

of one of his rules so that the program can be transformed

such that it contains a part which matches the built-in

rule.

The rest of the templates are used to unparse the

errors subtrees which may occur during the application of

the builtin rules. That is when an operand of an arithmetic

expression is not a numeric constant, or when the operand of

a booledn expression are not ccmpatible. In that case the

system will replace the subtree by an error subtree whose
root contains the name of the error template and whose two

children are the operands. For example the boolean expres-

sion ' "A > 3 ' will be transformed to ' error4 "A 3 ' and

will he unparsed as:

incompatible operands for boolean expression : a 3

64

C. CONCLUSIONS DRAWN FROM THE LESIGN OF THE TEMPLATE EDITOR

Before we start the design description ot the rule

editor, which will he our next step, it is worthwhile to

mention some observations and lessons learned during the

design of the template editor. Although conceptually the

two modules are quiet different, there are some common

aspects which relate to the list manipulation and the user

friendliness.

In the template editor we allowed many lists to be

present simultaneously in the semory, and subsequently we

included facilities and other security measures to deal with

this situation. As a result we ended up with a relatively

complex set of commands to manipulate lists. Each time the

user has either to zpecify the list he will be working on,

or let the system take the default value which may cause

some surprises ("Oh I thought the current list was the one

I inserted in!" But meanwhile he forgot about the save he

requested on the other list).

Furthermore the number of checks and, therefore, the

number of resulting errors have dramatically increased by a

factor of 3, thus affecting the efficiency and the amount of

interaction between the system and the user. Yet, in some

situations we have been pushed to create a unsecure situ-

ations such as allowing duplicate templates in the same list

(see MERGE), this may cause a lot of trouble during the

construction of the rules or programs if the user fails to

take the appropriate action to eliminate those duplicates.

Last but not least, this design decision will have a

direct impact on the implementation, and of course, on the

verification and debugging of the system.

In counter part we gained some power and flexibility in

the system which are not yet prcven to be useful. Our argu-

ments to support that decision were:

65

I

1. The possibility for the user to develop several

different lists of templates in parallel for a

family of applications.

2. The possibility to try many different versions of

templates for the same application in order to

determine which ones give the best results in

term of readability.

3. To be able to take two different lists, developed by

different persons, or the same person for different

applications, and make them a unique one for a new

application.

Although these arguments are sufficient to motivate cur

decision, there is still an important unknown factor which

depends on how much the user will take advantage of these

facilities. Usually, common users tend to be rather conser-

vative favoring simplicity even if it is not the most effi-

ciert way.

Based upon these observations, and tne time reguirel to

implement such facilities we uill design the rule editor

such that the user is allowed to have only one list in the

memory at one time. Thus, if the user wants to edit or try

different lists of rules he must unload the old one and load

o. create the new one. However, the templates which go with

these different rule lists may be present simultaneously in

the memory.

6

66

D. THE RULE EDITOR

1. General Description and Module Architecture

Figure 3.6 rEpresents th, architecture of the rule

editor. The module is made of 9 functions whic operate on

list, or on rules. However, since this modulc does not

allow multiple lists to be simultaneously present in the

memory, we don't need facilities to deal with such situ-

ation. Thus, the commands will be simpler than those of the

template editor. Notice also, now there are two files: one

for the abstract rules, and the other one for the concrete S

rules.

The plan of this section will be similar to the

previous one, in the sense that we will first discuss and

describe the design of the facilities which manipulate tho

list, then we will do the same thing for the the facilities

which manipulate the rules. Hcwever, since a list of rules
is treated like a list of templates we will try to maintain

the same strategy and use the same commands. We will not

spend much time describing again the same features and the

necessary preliminary controls, instead we will focus on the

specific reguirements of rule manipulation.

2. Starting the Rule Editor

Like the template editor, the rule editor is given

control by the user interface when the command RULEDIT is

selected. The Frompt signal will he displayed (RE-->) to

noti fy the user that he can start interactinj witl the

mod u 1 e.

3. 'he Command Interpreter

Tf role of this function is tc accept the user's command,

identify it, and when everything is correct, transfer the

contiol to tho approj idte function for execution. An error

m, isae, will bc i;ent when the ccmmand was not correct.

67

S

This solution has the advantaje of detecting all

the missing templates in one pass. Because the templates

are independent of each other, any missin; one wili not have

an effect on inparsiny the rest of the abstract tree. For

examFle, suppose we have the following abstract tree:

tempeval

tenpif

tempecu 1 teapmul

n 0 n tempfact

tem sub

n1

now suppose we have only the followinj templates:

temineval : evaluate (--)

tempif : if -- then-- else --

tempequ

tempfact : fact --

31

able to construct the abstract trees. However, for most

users, the concrete form is the most visible aspect of the

rules. It is the form which will be printed (see PRINT) ,

and in the present case the form which will be displayed on

the screen. But, since the abstract trees do not contair.

those key words which make a rule more readable by human

beings, we must define a way to get back from the abstract

form to the concrete form and sclve all the problems related

to this process.

This process of unparsing the abstract rules

will be relatively simple, provided the appropriate temp-

lates are supplied. It will consist for the system of

walking through the tree, and for each new root searching

for the template, embedding in the concrete form a copy of

this template with its place holders filled with the son

nodes. These nodes can be leaves representing a variable

name or a constant, or another root representing a new temp-

lates to be embedded. Thus, the templates will be nested

until the rightmost leaf is reached.

Several problems may be encountered during the

unparsing process such as the system not being able to find

the template needed (i.e. no template with the name

contained in the root exists), or the structure of the temp-

late not corresponding to what the system expects (i.e.

number of place holders in the template is less or more than

the number of sons in the subtree)

The first problem can be solved in two ways. The

first solution would be to stcp the unparsing process as

soon as a template is not found. The system would then

display the unparsed part and send aL error message with the

name of the missing template. The second solution would be

to display the name cf the missing template preceded by a

special character and continue to unparse the rest of the

tree.

80

The advantage of this approach is that it

prevents the user from making syntactic errors resultinj

from a misspelling in the key words. It also allows the

user to detect early an error in the spelling of the temp-

late name. For example, if he types "nul" instead of "null"

the system will not find the template and subsequently

doesn't display anything. Instead it will take the input as

a variable name and will request the next input.Thus, the

user will discover immediately that he made a mistake.

because he did not get the template text as he expected. Cr,

if "nul" happens to be a template name, the user can see by

looking at the displayed text that it is not the template he

wanted. Another advantage is that the user can not enter an

incomplete structure, because the system will keep asking

him until the abstract tree is completed and will not accept

any input after that.

Now the question is how the system is going to

determine if the input value is a template name, a variable

name, or a constant? To solve this problem, we will take

the same convention adopted in most conventional programming

languages. That is, template names are like reserved words,

numeric constants are integer and real type numbers, nonnu-

meric literals are any string preceded by a double quote

("), and a variable name is anything else. Thus, once a

name is assigned to a template it should not be used as

variatle name. Also, to avoid any ambiguity, a temlate

name should not begin with a dcuble Iuote or a dijit. In

fact if we recall, the system will issue an error message if

a template is given an illegal name including the cases

where the first character is a digit or a double quote.

h. displaying a rule

Most of our discussion up to now has referred to

how the user will enter a rule and how the system will be

79

inputs and outputs intermediate

tree states

stp1-----------------------------Iastep 1 tempeval

tempeval < eval la > I
<la> >

-- - - - - - - - ----------.. . . -- - - - - - -

step 2 tempeval

tempeval :< eval la > tempmember

< la >tempmember:< member 2a 2b >
< 2a >--

step 3 terpeval

tempeval :< eval la > I
<la>tempmember: < member 2a : 2b > termpember

<2a>x

----- --------------------------------
step 4 tempeval

tempmember
tempeval :< eval la > 2pere

<la>teapmember: < member 2a :2
<2a>x

<2b>l
1

When the tree is completed the system will automatically

end the interaction and ask for the synthesis part which

will he constructed using the same procedure.

Figure 3.9 Example of Rule Insertion.

78

I

position in the tree and what remains to input, simply by

looking to the indices. For exasple:

Suppose we have already defined the following templates:

tempeval : eval--

temipmember: member -- : --

tempnull : null --

tempif : if -- then -- else --

tempfirst : first--

temprest : rest --

tempequal :

Each one of these templates defines a model of suttree by

means of the place hclders, and a concrete form by including

key words. Now suppose we want to insert the following

rule:

eval member x:l ==> eval if null I then "false

else if first 1 = x then "true

else member x : rest 1

Using our solution the insertion will include the follcwing

steps:

" step 1: input the rule name

• step 2: input the analysis part

" step 3: input the synthesis part

Figure A.1 illustrates the complete session for entering the

analysis part of the above rule, with the different interme-

diate states of the abstract tree. Notice, for clearness,

in each step we repeated the irevious inputs and outputs,

while actually a new input or output is just added. The

arrow indicates the node to be filled, (i.e. the current

position within the tree).

77

the trees, and most important it will slow down the trans-

formation, since there will be more nodes to compare for the

matching and more nodes to copy during the substitution.

Another related proLlem, which has been intro-

duced earlier (see RESTORE), is that the modification of key

words in a given template will reguire the modification of

all rules which include the temilates. Otherwise, and since

new programs will use the new template, these rules will

never match a program subtree. On the other hand, using our

method the user can change the key words he wants without

affecting the rules and the transformation process. In

fact, we can use this property to have different concrete

forms for the same abstract tree. Th-s may solve the

problem of conflicting view pcints on how readability is

perceived between users who share lists of rules and

prog ams since each user can supply his own set of templates

to unparse the same rules and have his own version of the

concrete form.

In our solution, the user constructs a rule by

puting together the parts of the tree using the Lasic

subtrees whose structures are defined by the templates. He

requests each template by its name. He will be assisted by

the system which will display the text of the template with

the place holders indexed by a number followed by a letter.

The number represents the level of nesting which corresponds

to the current height of the tree. The letter represents

the position, from left to right, within the same height.

At the same time the system prepares a copy of

the subtree, fills its root with the template name, and

waits for the user to input the values of the son nodes.

These input values may be a variable name, a constant, or a

template name. In the latter case the node will expand to

another suhtree. The tree is ccnstructed top down from left

to right. Thus, at any moment, the user knows the current

76

.1)

on this aspect, and briefly discuss how the rest of the

operations are designed.

a. inserting a new rule

As we mentioned several times through this

chapter, a rule has two forms: (1) A concrete form which j
presents a readable and prettyprinted text constituted of

key words, variable names, and constants. (2) An abstract

form represented by a tree structure where we have only

template names for the roots, and both variable names and

constants for the leaves. The question now is how the user

will input the rule and how the system will construct the

abstract trees ?

Obviously, the classical approach is to let the

user input the concrete rule, and leave it up to the system

to build the abstract tree using the templates. Like we

said earlier, this will require the system to scan the

concrete rule, search for the templates which match the

parts of the concrete rules, and subsequently construct the -

tree. Of course, if the user types incorrectly one of the

key words, the system will nct be able to continue the

parsing process. In this case it must issue an error

message and either abandon the process or try to recover and

continue the parsing, which may require some interaction

with the user and perhaps a "dc what i mean feature". In

sum we will have to deal with the same kind of problems

encountered in conventional compilers.

Our objective is to take full advantage of the

presence of the templates to optimize and simplify the tree

construction, and eliminate a class of errors resulting frox -]

a missjelling in those key words. Yet, we want to get rid of

them since, as far as the transformation is concerned, these

key words have no semantic meaning. On the contrary, their

presence will increase the amount of storage necessary for

75

m

rulel eval if cond then ac else al

evalcon cond ac al

rule2 evalccn "true ac al

eval act

rule3 evalcon "false ac al

eval al

rule4 eval fact n

eval if n = 0 then 1 else n * fact n - 1

Figure 3.8 Prettyprixting of a Rule File.

which have been created or modified but not yet saved. When

such a list is found the systes will interact with the user

to get the confirmation to reinitialize the old list, or

abandon the request. The new list will have the name speci-

fied in the command, or if no name is specified the system

will assign to it the same name than the file.

5. Rule Manipulation

Operations on rules include insertion, deletion,

displaying, search, and modification. Like in the template

editor, and based on the same arguments, insertion may be

done done during the editing mode, or independently.

Moreover, all the operations on rules obey to the same

mechanism described in the temflate editor using the same

commands. The major difference, however, is that a rule is

not created like a template. Therefore, we will focus more

74

7)

rulel 01 tempeval 03 tem~if 00 cond 00 ac 00 al

03 tempevcon 01 tEmieval 00 cond 09 ac 00 al

rule2 03 tempevcon 00 "true 00 ac 00 al 01 tempeval
00 act

rule3 03 tempevcon 00 "false 00 ac 00 al

01 tempeval 00 alt

rule 4 01 tempeval 02 temEffact 00 n

01 tempeval 03 temFif 02 temegu 00 n 00 0
00 1 02 tempmult 00 n 01 tempfact 02 temFsuL

00 n 00 1

Each node of the abstract tree is represented by a

number followed by a string cf characters. The number

indicates how many dependents the subtree has, and

the string represents the content of the node.

Figure 3.7 Printing of a Saved Rules File.

of the rules. Both commands can optionally include the name

of the file. However, when the name of the file is not

specified, the system will autcmatically assign the name of

the list to the created file. As usual, an error message

will he sent to the screen if there is no rule list created.

d. the restore function

This function allows us to load in the memory

files which contain abstract rules. As we said earlier,

loadinj the abstract file will be a relatively simple task

with no parsing and no template search necessary. However,

before starting the execution of this function, the system

will check if there is already a rule list in the memory

73

6"

-.° 4 - .- - - . • ,- - v-- - - - -' " '

2

parser. Thus, each time we make a restore, the system will

have tc go through the parsing process to rediscover the

structure and reconstruct the tree. Yet, any minor modifi-

cation in the template, even when it does not affect the

structure, will make the parsing impossible. For example:

Suppose we had "fact n" as a part of a concrete rule, and

suppose that the template used to construct this part was:

"fact --".But, suppose for some reason (perhaps to improve

the readability), the user had decided to change it so that

now it looks like: "factorial -- ". Although this minor

change does not affect the structure, the system will not be

*ble to parse this same part of the rule.

On the other hand, using the abstract file the

user can change the template as he likes as long as the

structure remains the same. This is because, we don't
0

record these key words in the abstract file, instead we

record the structure. We don't even need the templates to

restore the rules since the structure of the tree is

preserved in the file.

The third answer suggests to save both forms.

Thib bulution seems to be the zost appropriate. The user

can have his printing whenever he needs, and the system can

restore the rules in an easy and systematic way without any

parsing required. In fact we will face similar alternatives

when we discuss how the rules will be constructed. Figure

3.7 represents a printing of a saved rule file (i.e.

abstract form), while figure 3.8 represents a printing of a

its corresponding prettyprinted concrete forms.

Commands

In order to distinguish between the two opera-

tions we will provide two different commands. Thus, to save

the abstract form we use the command SAVE. On the other

hand we will use the command PRINT to save the concrete form

72

c. saving and printing a rule list

Although these are two separate functions, we

prefer to discuss them together because they represent two

symmetric aspects of the rules.

As we already know, a rule has two forms: an

abstract form and a concrete form. The abstract form is a

tree structure which will be used for the transformation

process. The concrete form is what will be displayed by the

system for the user convenience.

Obviously, like any other software product, it

does not pay to spend a lot of work to develop the rules if

we can not reuse them. Therefore it must be possible to

have a permanent copy of the rules which can be restored

when needed. The question is which form we will save?

Basically, there are three possible answers to

this guestion:

1. Save the abstract form orly

2. Save the concrete form only

3. Save both the concrete and the abstract form

Let's examine each one of these answers and decide which one

to choose.

Saving the abstract form only seems to be suffi-

cient, at least as far as the system is concerned, since it

will be able to restore the file and reconstruct easily the

original abstract tree without much work. The problem is

that the only way the user can look at the concrete rules is

by using the display facility. Therefore, he will not be

able to have a clean and readahle printing on which he can

work and understand what is going on.
0 Saving the concrete form will satisfy the user's

need, but in order for the system to restore the file and

reconstruct the abstract trees, we will have to include a

71

.S . i •, _ i ., : : : _ . , " , ,

.* ,- • - . . , - - . ° - • . , - - -- . -_ . -. j - . ° -•

Table XIII shows an illustration of the interaction between

the system and the user for the third case.

TABLE III

Dialogue for the Reinitialization of an Existing Rule list

* OPEN LISTNAME *

* warning! There is already a rule list in memory

* <listname> not saved since the last change *

4 *do you want to reinitialize it yes/no: *

* . A "yes" answer causes the reinitialization *

* 2. A "No" answer causes the abandcnment of the *

* request *
= = =-=-- ___

b. the edit function

Conceptually there is no difference between

editing a list of templates and editing a list of rules.

Therefore we will carry out the same operations we described

before. These operations are display, delete, insert, and

search. Nevertheless, we must mention that in the present

case the user doesn't need to specify the name of the list

to edit, since it will be automatically done on the current

list provided it had been prEviously created by an open

command, otherwise the system will generate the fcllcwin g

error:

"can not edit, no rule list opened"

The major difference, though, will be in the way

we will enter a new rule. But since this operation is part

of rule manipulation, we will delay its discussion until the

next subsection (i.e rule manipulation).

70

4. Lists ManiRulation

In this subsection we will describe the facilities

which allow us to process a list of rules as whole entity,

the commands to request these facilities, and the different

controls and checking needed before and during the execution

of the function.

Obviously, facilities such as remove, merge, and

list are not needed in the present case because at most we

can have only one list. In addition, most of the commands

will be shorter since now it is not necessary to specify the

name of the list. On the other hand, because the rules have

two different forms we need to include additional facilities

to handle each one of these two forms. Also in some cases

we need to include additional security measures.

a. the open function

Like in the template editor, the open function

will create and initialize a new list. However, now the

system has to deal with different situations, which are:

1. There is no list in the semory

2. There is a list but it is empty

3. There is a list which contains rules

The first two cases don't require any special

treatment other than to create the list, initialize or rein-

itialize it, and assign to it the given name. The third

case requires more consideration from the system. Before it

can execute the OPEN the system must make sure that the real

intention of the user is to reinitialize the list. Thus it

must inform him about the existance of the old list, its

contents, and whether or not it has been saved after the

last modification. Based on this information the user can

either abandon to the request or confirm it, in which case

the system will go ahead and reintialize the existing list.

69

Sl A RI EXITI I

COMMAND INEPPRETER

CURRENT HELP INSE11T

OPEN '-R--UI PLES EDIT

LIST

FI

RESTO4E ABSTAEPR N

ILIES

figure 3.6 Architecture of the Rule Editor.

68

Since the templates "tempsub" and "teapmul" are missing the

system will display the following concrete form:

evaluate (if n = 1 then I else ?tempmul n fact ?tempsub n 1)

The second problem which can be encountered is

that the structure defined by the template found does Lot

correspond to the structure of the subtree the system needs

to unparse (i.e. the template has been changed between the

time the rule was entered and unparsed). In this situation

we have two different cases. The first case is when the

number of place holders is less than the number of sons in

the abstract subtree. Conversely, the second case is when

the number of place holders is greater than the number of

sons.

The solution for the first case can be either to

stop the unparsing process and send an error message or, the

alternative would be, to continue and unparse the extra

sons, but display them with a special note. For the same

arguments mentioned above, we will chose the second alterna-

tive and display the extra scns between square brackets

preceded by the name of the template. We added the name of

the template because the extra sons or the place h-lders may

appear far from its root in the concrete form, making it

difficult for the user to determine to which template the

extra son or place holder relate. For example:

If the template "tempif" was changed by "if -- then -- ", the

same abstract tree will be unparsed and displayed as

follows:

evaluate (if n = 1 then 1 [tempif n fact n - 1]

This tells the user that "tempif" has now one less place

holder than when used to construct the rule.

For the same reasons, the second case will be

solved in a similar way. That is, the new e!xtra place

82

holders in the templates will be displayed between brackets

preceded by the name of the template. For example:

If the template "tempeval" has been chanyed so that it

contains two place holders instead of one, the rule will

then be displayed as:

evaluate (if n = 1 then 1 else fact n - 1 (tempeval --

This tells the user that "tempeval" has now one extra place

holder than when used to construct the rule.

c. deleting a rule

This function allows one to delete the rule

currently displayed. After the deletion the system will

automatically display the next :ule which becomes the

4 current rule. However', whea the end of list is reached the

current rule will be "nil" and the message "end of list"

will appear on the screen. In fact tnis function works

exactly like the delete of the template editor.

d. searching for a rule

During the editing aode the user may search for

a rule by typing its name. If a rule with the given name is

found, it will be displayed and become the current one.

However, if it is not found an error message will be sent to

the screen and the system will return back to the situation

before the search was requested.

e. modifying a rule

As in the template editor, the only way the rule

editor provides to modify a rule is by deleting the old one

4 and inserting in its place the new one. Of course, this is

not a convenient way to do modification especially when a

rule is long. Therefore it is preferable to include a more

elaborate function which allows partial modification. But,

4

83

4

since we don't have a parser, the user has to work on the

abstract tree. However, this task will be simple because

all we can do is to replace a subtree or a node by another

one. This can be done by a single command which specify the

node or subtree to be replaced (using multiple Iualifier to

reference a node), and then the new node or subtree can be

entered in the same way we enter a rule.

6. Gettin Information on the Current Rule

This utility allows to get a message which tells the

user what is the current rule. The command to get this

information is: CURRENT Depending on what is the current

position, the system will print one of the messages shown in

table XIV.

TABLE XIV

Messages for the Current Command

* *

* 1. < a template name > *

* 2. "nil"; list is empty *

* 3. "nil"; end of rule list reached *
** *

4. "nil"; no rule list has been opened or restored *
* *

7. Exit the Rule Editor

By typing the command EXIT the user will exit the rule

editor,and return back to the user interface.

01
84

E. THE PROGRAM EDITOR

Recall that a program in our system has the same struc-

ture as a rule except that it forms a uniue synthesis Fart.

Also, like the rules, programs have an abstract form and a

concrete form. It is therefore natural that we manipulate

programs and their lists like we do for the rules. In fact

we will use the rule editor to write and edit programs.

However, in order to avoid the user geting confused we have

made some adaptations so that he can make the separation

clear. We have changed the prompt signal from (RE-->) to

(PE-->) and we have replaced the word rule by program in all

the messages and other system outputs.

1. Usin the Prcqram Editor

The program editor is given control either by the

user interface when the command PGMEDIT is typed, or auto-

matically by the interpreter when the user requested to save

or print the result of the interpretation of his program.

Once the program editor has started the user can request the

same facilities available in the RULEDIT, 'sing also the

same commands to manipulate both programs or a program list.

Thus, during one session we may have several programs

grouped in the same list and ready to be interpreted without

any loading and unloading being necessary.

2. Proqram Lists

There are two separate program lists which can be

manipulated by the program editor. The first list is the

one created by the user and which may contain any number of

programs. The second list is created. by the interpreter to

hold temporarily the result of the interpretation, which

might be either a entire tree, or a single value. The name

of this list is "T.RESULT" and the name of the resulting

85

program is the same as the original program. However, since

the program editor can not handle more than one list during

I v, a given session, it will not be possible for the user to

access his program list when the program editor is given

control by the interpreter. Conversely, the result list can

not be accessed when the prograz editor is given the control

by the user interface.

The question is: why is the program editor given the

control by the interpreter? The reason is simply to allow

the user to save, print, or redisplay the result (the result

is automatically displayed after the interpretation). But,

since this result can also be a new program tree, we thought

it is natural to use the program editor facilities to

perform these operations. Thus, the user can manipulate it

like he manipulates any other list of programs. However, in

principle, such things must be hidden from the user. That

is, at the end of the interpretation or when the command to

interpret is entered, the user specifies if he wants the

result saved, printed or displayed. Whether the interpreter

uses the program editor functions or its own functions must

Le irrelevant for the user and hidden from him, especially

when this list is temporary and will be lost as soon as we

exit the interpreter. Most of the users will probably ask

why they can not access the result again since they just did

it earlier using the program editor.

Now, you may have wondered why we make such a design

decision since we think this shculd be hidden from the user

and yet it may create some confusion. The main reason which

motivates our decision is that we did not want to overload

the interaction between the user and the interpreter with

things which normally relate to program manipulation and not

to its interpretation. For example, in order to be consis-

tent we must allow the user to give a new name for the file

to be saved, to specify if he wants to save the abstract or

86

S

the concrete form of the program, or both (which regdire

two different file names), and perhaps allow him to delete

some of the program results before saving or printing them.

This, of course, will involve a lot of interactions, which

have nothing to do with the interpretation and it would be

inappropriate to incorporate them. On the other hand, the

user will find it more natural to perform such oFerations

while using the rule editor.

3. Exitin q The Proqram Editor

To exit the program editor we will use the standard

command EXIT. This will return the control back to the

caller (i.e. either the user interface or the interpreter).

4. Limitations and Constraints

Since we are using the same features as the rule

editor, we will have to deal with the same limitations and

constraints concerning the modification of the programs.

Yet, it may be worst because a program usually is longer and

make take several lines to display. Therefore, it is neces-

sary to provide a more elaborate way to modify programs

other than by simply deleting the old one and inserting the

new one.

Also, a program may be so big that it is not prac-

tical to display it entirely. Instead, it would be better

if the user can ask to show only a given part, or truncate

at a given ioint, with the possibility to navigate between

the different nodes of the program tree.

In summary, we need a tool which makes uses of the

structure of the program and the templates to perform the

kind of facilities we described above. In fact it will be

easy to identify and reference a node in the abstract trees

by utilizing the template names used previously to construct

the program.

87

S

F. THE INTERPRETER

This module is given the ccntrol by the user interface

when the user types the command INTERPRET. Once the prompt

signal (PI-->) is displayed the user can request the inter-

pretation of one of the programs included in the program

list. In addition, like the other modules, the interpreter

offers a help facility, which may be obtained by typing the

command HELP.

The user requests the interpretation of a program by

typing its name. In addition, the user may ask the system to
display the names oZ the rules successfully applied for the

transformation process by typing the word "RULE" or simply

"E" after the program name.

The interpretation process consists of the following

steps:

1. Locatinq the Proqram List

In this step, the system will verify if the user has

already loaded or created a program list. If such a list is

found the system will go to the next step otherwise it will

send an error message "can not interpret; no program list

in the memory", and will redisplay the prompt signal. In

this case the only operations allowed are either help or

exit.

2. Locatinq the Program

Once the program list is located, the system will

search for the given program until either it finds it or the

end of list is reached. In the first case it will continue

with the next step, in the second case it will issue the

following error message:

"<program name> not found"

88

3. Creation of the Result List and Program Co y

In this step the system opens the result list called

"T.RESULT" and copies the program to be interpreted into

this list. This coiy will be used for the transformation

process. Thus, the original copy will be left unchanged

after the transformation, so the user can request the inter-

pretation of a given program as many times as he wants

(perhaps with different sets of rules) without being forced

to switch back to the program editor, and reload th? program

at each new interpretation.

4. Proaram Transformation

In this step we want to apply to the program the

transformation rules until they no longer apply. when this

occurs we will have the final state of the program, which

may be either another program (i.e. an abstract tree), or a

single value (i.e. a node which contains the final result).

When the transformation is ccmpleted, the system will

unparse the transformed program and display the concrete

form as the final result.

The program transformation will be performed by a

collection of functions which we will discuss below. Also,

we will define the algorithms for each function, which are

based on the analysis given in [Ref. 1]. These algorithms

will be described using a Pascal like pseudo-language with

comments included between brackets.

a. selecting and applying the rules

Basically there are two possible approachs to

selecting the rules to apply for the program transiormation

process. The first approach consists of picking up a program

subtree (the first subtree will be the program itself) and

searching for a rule which matches this program subtree. If

89

such a rule is found the system will proceed to the synthes-

ization of the program (i.e. perform the tree substitution).

This process is repeated with tLe newly obtained program. On

the other hand, if no rule matches the subtree, the system

will pick up, in preorder, the next program subtree and

restart the process with this new subtree. This process will

continue until no subtree of the program matches any of the

abstract rules.

The second approach consists of picking up the

next rule in sequential order and matching it against the

program subtrees. When a match occurs the system will

proceed to the synthesization of the subtree and will

restart the process with the resulting program. On the other

hand, when no subtree of the program matchs the rule, the

system will pick up the next rule from the rule list and

start the same process again. Like in the first approach,

the transformation will end whon no rule matches any of the

program subtrees.

In terms of number of comparisons as well as in

term of inplementation difficulty, Loth methods appear to be

equivalent. There is no clear evidence about which method

is more efficient. Therefore we believe that the best way

to evaluate and compare them is by implementing each one of

them and by having them tested cver the same set of programs

and the same set of rules. Hov ver, the second method has

the advantage of maintaining ti.e same order of selection

which is the order in which the rules have been entered.

This may be in some cases useful, and may reduce the number

of rules needed to transform a program (e.g. recursive func-

tions, where the basis must he checked before the recur-

sion). Thus, the user can take advantage of this property

when he writes his rules.On the other hand,in the first

method the order of selection is random and hardly predic-

table especially in case of relati' 'ly large programs.

90

In our system we will use the second method

because it preserves the order of the rules and,of course,it

still works in the general cases. The general transforma-

tion algorithm is defined as follows:

ALGORITHM transform (program,rulelist)

BEGIN

end of transformation:=falee;

WHIIE NOT end of transformation DO

{ transform the Frogram by applying the rules

until they no longer apply }

BEGIN

success := false;

getfirstrule(r,ruleli.Et);

WHILE (NOT end of rulelist) AND (NOT success) DO

f select the rules one by one until either a

match occurs,or all the rules have been

unsuccessfully tried for all program subtrees }

begin

getfirstsubtree (st, program);

WHILE (NOT end_ofErogram) AND (NOT success) DO

L search for a program subtree which matches

the rule until success or no more subtree }

BEGIN

initialize (c) ;

match (r. analysis, st, c, success)

IF success THEN

synthesize(r.synthesis,st)

ELSE

getpreorderiiextsubtree (st, program);

END WHILE;

getnextrule (r, rulelist) ;

END WHILE;

endofjinterpretation := NOT success;

END WHILE;

END transform.

91

b. tree matching and variable binding

This process consists in matching the analysis

part of the abstract rule against a given subtree of the

program. The result of this zatchiug process is either a

failure, or a finite function whose domain is the set of all

variable names in the abstract rule, and whose range is the

set of values bound to these variables during the matching

process. Thus, we need to define a procedure

match(A,P,C,SUCCESS) where A is a pointer to the root of the

abstract tree which initially uill be the main root of the

analysis, P is a pointer to the root of the program subtree

to be matched against, C is the context of the variable

binding, and SUCCESS is a Boolean variable which will indi-

cate if the match succeeded or not. Note, since the valaes

bound to the variable names can be either a single node

which contains a constant, or a whole subtree, therefore the

range of C will be a set of pointers to these single nodes

or subtrees, and whose initial values must be "nil".

Using the same pseudo language we define the

algorithm for the match procedure as follows:

ALGORITHM match (a,p,c,success)

BEGIN

IF constant (content (node(a))) THEN

BEGIN

[case of constant to match }
IF content (node (a)) = content (node (p)) then

success TRUE

ELSE

success := FALSE

END f end case of constant to match }

ELSE IF istemplate (contert node(a)) THEN

BEGIN

[case of subtrees to match)
[the content of the rcots must match and

92

the rest of the subtree must also match }

IF content (node (a)) = content (node (p)) THEN

BEGIN

[check the rest of the subtrees

s firstsubtree (a);

s 1 firstsubtree (p);

success := true;

4HILE (s<>nil) AND (sl<>nil) AND (success) DO

[match the rest of the rule subtree against
the rest of the program subtree until

either a failure occurs or no more subtree

to be matched J
BEGIN

match(s,sl,c,success);

(prepare next subtrees }

s nextsubtree (a)

sl := nextsubtree (p)

END WHILE;

f at this point both subtrees must finish

together otherwise match fails

IF s <> nil or sl <> nil THEN

success: =false;

END

ELSE

[roots didn't match)
success: =false;

END [end case of subtree to match }

ELSE

BEGIN

(case of variable name in the node I

IF in _domain (content node (a),c) THEN

(p must match the value bound to the variable

in the node pointed by a.We will use a special

function called "equal" to verify the euality

between trees patterns }

93

success := eiual (p, bindingof (content node(a))

ELSE

BEGIN

[bind the variable to p and add it to c }
success := true;

includebound (content node(a) ,p,c)

END;

END; [end case of variable }
END match.

c. synthesization (tree substitution)

The synthesization process will be done after

the matching has succeeded and returned a finite function

whose domain is the set of variable names found in the anal-

ysis part of the rule and whose range is a set of pointers

which point to the nodes and subtrees bound to the vari-

ables. In addition, we have two pointers; the first one

points tc the program subtree which matched the rule, and

the second pointer points to the synthesis part of the

abstract rule. Thus, we have everything we need to start

the synthesization process.

Basically, what the system will do is to take a

copy of the tree representing the synthesis part of the

rule, and then visit one by one the leaves of that tree

(since a variable can not be found in a root node). If the

leaf contains a variable name then the system will replace

the leaf node by the value bound to the variable, which can

Le a whole subtree. On the other hand, if the leaf was a

constant or a template name then it is left alone. Finally,

when all the leaves have been treated, we detach the old

program subtree from its father and attach the synthesized

copy.

94

The algorithm which describes this function is defined as

follows:

ALGORITHM synthesize (p,s,c)

BEGIN

copy (s,sl)

get firstleaf (leaf,sl)

WHILE leaf <> NIL DO

BEGIN

IF is-variable (content (leaf)) THEN

f extract from the range of c the pointer to the

value bound to leaf, and make the replacement }
BEGIN

i := binding (content (leaf) ,c)

detach (leaf,father (leaf))

attach (i,father (leaf)

END; (leaf treated j

get_nextleaf (l,sl)-

END;

(when all leaves treated }

detach (p,father ())

attach (sl,father(p))

END synthesize.

5. Disp1ljinj the Result and the Rules Applied

In this step the interpreter will Uisplay the result

of the transformation. Note that this result can he an

entire program tree, in which case the system will untarse 0

it using the same iprocess we descrined in the rule editor

and the program editor. Eut before the result is

displayed,and only if the opticn 'rules' or 'r' was speci-

fied, the system will display th.e names of the rules S

successfully applied. Also, the total number of these rules

will be automatically displa-ed at the end of the program

inter jretation.

95

-A152 716 INVSTIGTION ND IMPLEMENTRTION OF A TREE 2/'2
I TRANSFORMATION SYSTEM FOR USER FRIENDLY PROGRAMMING(J)
I NAVAL POSTGRADURTE SCHOOL MONTEREY CA M 8 CHOK DEC 84pUNCLAIEF/69/2 N

EhEEhEhE

.4.

.111K: 11_______ 3- 2

11111*~ %2 2.0

MICROCOPY RLSOLUTION TEST CHART

6. Savinq and P rintinq the Result

At the end of each program interpretation, the

system will give the user the cpportunity to manipulate the

result list. Thus, the system will ask the user the

following question:
"Do you wish to access the result list yes/no: "

A "no" answer will cause the system to abandon the result

list and redisplay the prompt signal (PI-->). A "yes" answer

will cause the transfer of the control to the program editor

where, as we explained in the previous chapter, the user can

request any operation he needs cn the result list, such as

save, print, or edit. In fact we did not impose any

restriction on the allowable operations even though it does

not make any sense to perform a restore, or an insertion on

the result list.

When these operations are terminated, and as soon as

the user exit the program editor, the control is return back

to the interpreter. Note, at this point, the result is lost

because the next time the user will have the opportunity to

reaccess the result list will te after a new interpretation

request, but the old result will be overwritten by the new

one.

As an alternative, and since a result list can

contain any number of program results, we could just append

each new result at the end of the result list, without over-

writing the old one. In fact this will not involve any

change in the implementation, because the interpreter will

use the insert function of the program editor, which takes

care of multiple programs in the same list. However, this

will create some practical protlems. For example, suppose

that during the interpretation session the user wants to

save each result on a separate file. This will not be

possible unless the user, after each interpretation,

96

switches to the program editor and deletes from the list the

previous result, otherwise each new file will contain the

" old results in addition to the rew one. Also, suppose that

the user requests the interpretation of the same projram

more than once (perhaps using different sets of rules). In

that case we have to decide, or let the user decide, whether

to overwrite the old result, or create another one with the

same name (since the result takes the name of the program),

which may create confusion for the user.

Ve think that it is much simpler to treat the result

list as a temporary list whose purpose is to serve as a copy

for the transformaticn, and to give the user the possibility

to save or print the result on a disk file.

7. A_lyin_q h t Built in Rules

Built-in rules are put on the top of the user rule

lists. That means, they take precedence on the user's

rules. These rules are ordered as listed in table XV When a

subtree of the program matches the analysis part of a

built-in rule (i.e. either a built-in template was used to

construct the program-subtree, or the subtree was previously
transformed by applying a user rule), the interpreter will

call the appropriate built-in function to execute the opera-

tion, and return a single node containing the result of the

execution.

However, before the execution, these functions will

check if the arguments are of ccmpatible types (both numbers

for arithmetic operations, and both numbers or both literals

for boolean expressions). When an error is detected the

function will return a subtree whose root is the name of the

built-in template which corresponds to the appropriate error

type, and whose two children are the arguments of the

expression. These subtrees will later be unparsed according

to the corresponding built in templates listed in table X.

97

4.

TABLE XV

Built in Rules

*== -=

rules for arithmetic operaticns
----------------------------- a

number a + number b sum a b

number a -number b sub a b

number a / number b div a b

constant a * constant b ==> pro a b

sum,sub,div,and pro are built in functions which will

return a single node containing the result of

operation. *

Rules for boolean operations
- -- --- --- ---

constant a = constant b => eyu a b
constant a > constant b gre a b

constant a < constant b => les a b

equ, gre, les are also built-in functions which will

return a single node containing the value "true or

"false.

rule for eval

eval constant a ==> a

the builtin function evaluate will return a single

. node containing the value of the argument

For example, giving the subtrEe "6 + 3.45.31" the system

will return a subtree whose root contains "error2" and whose

sons contain "6" and "3.45.3", which after unparsing will

l give:

'error: right argument is not numeric 6 3.45.3'

98

6 .[

, , ._ _-,_. , : , .- - - - - --. . . - *. ,~ .ff r . ~ .. '. ..

As an alternative, we could have decided to leave

the subtree as it is (i.e. assume as the matching failed).

In fact this would agree with the defination of the built in

rules, since the sons must be numbers for the arithmetic

expressions, and of compatible type for Boolean exfressions.

Later, in the conclusion, we will explain why it would be

better if we adopted the second alternative.

8. Exiting the Interpreter

As usual, we use the command EXIT to terminate the

interFretation session,and return to the user interface.

99

I ". . ".•.

IV. CONCLUSION

A. DESIGN ASPECTS

The purpose of this study has been the investigation and

the inplementation of a user friendly programming system

based on tree transformations. Thus, in Chapter 2 we

defined the various objects on which the system and the user

will operate. Also, we defined and described a typical

scenario of the different steps for developing programs, and

we discussed the specifications of the programming environ-

ment. Along with this discussion, we defined a collection

of tools which will support the user to accomplish all these

steps. That is, create the templates and the rules and

write, interpret, and debug the programs. In Chapter 3 we

discussed the design and some of the implementation aspects,

and, except for the debugger, we described the different
facilities provided ty each of the environment tools to

manipulate the various objects.

The templates provided a means to define the semantic

and syntactic framework for the lainguage which will be used

to write the rules and the prcgrams, and will guide the

system (via the place holders) to parse and unparse the

abstract trees representing the rules and the programs. As

we have seen, this j arsing process is done efficiently with

the minimum necessary storage, without scanning or token

recognition except for determining if the input is a temp-

late name, a constant, or a variable name. Also, this

process does not permit any syntactic errors, and prevents

the construction of incomplete cr incorrect structures.

The key words emtedded in the template's text play the

role of syntactic sugar to make the concrete form of the

100

rules and programs more readable, better formatted, and

easier to understand by human beings. These concrete forms

can be changed as the user desires by simply changing the

key words, or by adding some mcre including comments. This

will not have any effect on the rest of the processes (i.e.

parsing, unparsing, and transformation). Hence, these

changes can take place after the construction of the rules

and the programs. This will make it possible to have many

different concrete forms for the same program or rule, which

represents a secondary application of the system to be used

for the formatting of programs by supplying the appropriate

set of templates.

Program formatting using our system, goes beyond the

conventional formatting systess (i.e. indentation and

spacing between lines of code), by involving the program

text itself (i.e. the key words such as "if", "else", "="

etc.). This provides the user with a wide range of language

levels which can go as high as his own natural language.

However, as we know, this is only partially true because the

user can not enter the concrete form as a normal text.

This raises the issue whether or not we should include a

parser so the user can write the rules and the programs in

the same way they are displayed. As you recall, in our

present system, the user requests a template name and the

system asks him to fill the place holders. In addition the

system displays the text of the template; thus the user

actually sees the concrete form with the place holders high-

lighted, which relieves him from the task of writing all

these key words and making syntactic errors, which will

increase the time necessary to write the concrete fow, and

the time necessary to construct the abstract trees.

Instead, the user can give meaningful names to the templates

so he can remember them easily (e.g. "if" for the if state-

ment) during the insertion phase.

101

• I._•

- . ' -7

Adding a parser to the system would make it possible for

the user to enter directly the concrete form using a conven-

tional text editor, but it would in turn involve a lot of

overhead since the system has to go through the kprocess of

scanning the concrete form, searching for the appropriate

template (i.e. using pattern matching) to determine the

ri structure it must construct. Also, this process is likely to

generate syntactic and semantic errors (e.g. incorrect

structure) and consequently it will affect considerably the

efficiency of the system.

We think that our rule and program editors can be aore

flexible, more powerful, and more adequate in the present

environment than a conventional text editor provided that we

include an "undo" feature, and a more elaborate modification

facility

1. The "Undo" Feature

The "undo" feature will allow the user to go back-

ward in the construction of the abstract tree. That is,

during the creation of a rule or a program, if the user

discovers that he entered an incorrect input, he can reguest

an "undo", which will cause the system to discard the value

input with its corresponding tree structure, readjust the

current position in the tree, and prompt again for the

replacement input. For example, suppose the user wants to

construct the following rule:

eval fact n ==> eval if n = 0 then 1 else n * fact n - 1

FuLther suppose that everything went correctly until the

step to enter "n = 0 ", this means the intermediate shape of

the abstract tree representing the above concrete rule will

be as follows:

102

tempeval tempeval

te:)fact tempif

n

As indicated by the arrow, the current eosition is then at

the first son of "tempif" subtree. Now sujpose the user

typed "tempgreat" instead of "tempequal". As a rtsult the

system will display the text cf "tempgreat", create its

corresponding subtree, fill its root with tue iname "temp-

great", set the current position to the first son of the

created suhtree, and wait for its value. By typing "undo"

the user will cause the system to discard "tempgreat",

destroy its corresponding subtree and readjust the current

position such that it points to the upper level (i.e. in

this case the first son of "temFif" subtree).

2. The Modification Facility

The modification facility has been already discussed

in Chapter 3. It consists of making it possible to request

the replacement of a subtree by another one. The old suhtree

is located by using, if necessary, multiple qualifiers. When

it is found, the system will discard this subtree and ask

the user to input the replacement using the same input

method described for the insertion. For example, suppose we

have already created the following rule:

eval fact n => eval if n = 0 then 1 else n + fact n - 1

Now we want to change 'In + fact a - 1" by "n * fact n - 1".

This would require to locate the subtree, which can be done

by the command "locate synthesis.tempadd", where the quali-

fier "synthesis" is added just to speed up the search for

103

the subtree, since "tempadd" is sufficient to uniquely iden-

tify the subtree we need. When the node is located the

system will display the subtree (i.e. in this case n + fact

n - 1), and will ask for the replacement by displaying: <2c>

(i.e. second level third son). At this moment, the user can

start entering the new subtree in the same way as for inser-

tion. However, to avoid retyping the same thing when there

is no change, the user can press the return key to notify

the system that the rest of the subtree remains unchanged.

Also, if the new structure has mor dependents the systen

will skip to the next input required for the extra indepen-

dent. of course, this may require some overhead due consis-

tency checking between the new and the old structure, and

may require facilities to do aultiple replacements in the

same subtree by jumping from one part to another.

This raises the issue whether or not we should have

included a structure editor which can accomplish such navi-

gation operation, and allows the user to display and modify

part of a rule or program, with the possibility of zooming

in and out. After experimenting the system we felt that such

editor with such facilities would be very helpful especially

during the debugging process where, during the transforma-

tion, we need to lock at part of the program and the rules

to find out the origin of the trouble (e.g. why a given rule

didn't match a given part of the program, or what is the

intermediate result after the application of a given rule

etc.). However, a structure editor alone will not he able to

do all these operaticns. Therefore, we need a debugger with

the capability of answering specific questions such as:

1. Why a rule can not be applied to the program in general,

or to a specific subtree?

2. When a rule is applied and to which subtree of the

program is it applied?

1u4

3. What is the intermudiate result after a given rule is

applied?

In addition, the user 7.ijht be interested ir

performing the interpretation step by step with the interme-

diate result displayed after each step, the possibility of

changing part of the program or the value of a given node to

see how it would affect the transformation process and the

result, alterin, the order of application of the rules by

specifically giving the names and the orders of application,

and finally beinj able to request backtracking. The latter

reylest should not be difficult to implement, since it will

take a switch which tells the system that now the synthesis

part and the analysis part are inverted, and the order of

the rulcs is also inverted (i.e. select the rules starting

from the bottom of the list). Pith that, the interpretation

should give a backtracking of the original one. For example

having the following intermediate result:

tempeval

I
tempif

S* \f ac

3~ 01ac

105

This result is obtained by the application of the following

abstract rule: 2

ten eval ItempevalI I 3
tempifact tempif

I -/
n

n 0 n tempfactI
n 1

By inverting the rule and applying it the result will be:

temneval

t e:Ifact

3

The above alstract tree represerts the previous state of the

program (i.e. obtained by backtrackinj)

3. Summrary of the System Extension

In summary we suggest the extension of the system in

the foilowing ways:

1. Overcome the problem of locsing control when an attempt

to open a file fails because of an nonexistinj file name for

the RESTCRE command. As we suggested in Chapter 3, this S

will be done by a special rcutine which must check the

directorj before an attempt tc open a file is made, and

subsejuentiy either go ahead dnd open it, or send an error

message and return the control Lack to the user. 6

196

I

2. Change the template editor so that, like the other

modules, only one list can be present in the memory at any]
given tilie. This will provide standardization of the

modules, and avoid the user getting confused as hapjened

during our experimentation with the template editor.

3. Restrict the ojerations the user can perform on tne

result list to SAVE, DISPLAY, and PRINT. This ensures, that

the user can not do meaningless operations on the result

list such as INSERT, RESTORE, and DELETE.

4. As you recall, we delayed the control of the lists witch

are created or changed during the session but not savEd,

until the user requests a "QUIT" (i.e. exists completly the

system). Thus, although we suggested that it would be

letter practice to save the lists when switching from one S

modlule to another, we did not think that we should enforce

it, or give a warning message because we don't know yet if

the user will return back and make other changes. But,

after we experimented with system we have decided that we

should have included this control within each module because

in some situations we lost cortrol of the systc m without

having the opportunity to go back to the appropriate editor

and save those lists. One ccmmon situation which illus-

trates this inpredictable situation is when we the system

went into an infinite looF durinj the interpretation

process. In this case the only way to stop is to abort the

job and return to UNIX.

5. include a structure editor fcr the rules and the programs

with the facilities we have described, including the "undo"

and "modify" features.

6. include a debugger which ccoperates with the structuro

editor to provide the facilities and answer the kind of

que~st ion= w have described.

107

S

G. USING THE TEMPLATE EDITOR

The temlate editor offers a collection of faciiiti- to

manipulate Loth the templates and the template lists. Eut

!,,fore we -resent the different commands, let's make C!Car

the notion of current list and current template.

The template editor allows many lists to be simulta:.u-

ously present in the memory which can be manipulated altir-

natively one at a time. Therefcre, the current list is the

latest one which have been involved with a list operation,

except for renove where the next list becomes the current

one, or "nil" when there is no next list to the removed one.

These same rules apj~ly to the notion of current template

within a list, but the current template will take the value

"nil" at the end of list or when the list is empty.

1. Built in Template

These templates are part of the system. They are

grouped in one list named BUILTTEMP loaded automatically at

tiie starting of each session. Once loaded the list can be

accessed like any other template list.

2. Oen a List (OPEN LISNAME)

This command allows one t3 create and initialize a

new list, or locate an existing list. In both cases the

specified list becomes the current list, but this will not

allow one to start the editing yet. This involves the next

command.

3. Edit a List (EDIT LISTNhME STARTING POINT)

This command permits to start the editing session on

the given listname, provided that the list have been already

cre-ted Ly an OPEN or RESTORE ccmmand. The listnawe may Le

omitted in which case the -ystem will assume by default th-.

cUulrent list.

121

C. STARTING THE SESSION (TTPS)

When you type TTES the system will start the sessic and

give you the prompt (-- >) to select the module you wdat to

run or to request help.

D. GETTING HELP (HELP)

by typing HELP the system will display on the screen the

informations relative to the module currently running.

E. SELECTING A MODULE

TEMPEDIT selects the template editor.

RULEDIT selects the rule editor.

PGMEDIT select the program editor.

INTERPRET select the interpreter.

F. ENDING THE SESSION (QUIT)

To terminate the session. and exit the TIPS you type

QUIT. However, before the system logs you off it will check

if there is any list left in the memory which has been

created or modified during the session but not saved. If

such a list or lists are found they will be listed or. the

screen, and you will be asked if you want to save these

lists or drop them. When you answer by "NO" you confirm the

"UIT", and the list will be destroyed. On the other hand,

if you answer "YES" you will get back the control, but it is

still your responsibility to save the lists you want to by

selecting the appropriate module and command.

120

, " "' . .. - -' " . .. " .. ;m, ,,..n ., ,. m ,. , .. b . .*d. .° . .. *. .. . - ..

APPENDIX A

USER'S GUIDE TO TTPS (A TREE TRANSFORMATION PROGRAMMING

SYSTEM)

A. INTEODUCTION

"TTPS" is a programming environment which includes four

integrated tools: A template editor, a rule editor, a

Frogram editor, and an interpreter.

On the top of these modules there is the user interface

whose function is to allow the user to log on and off,

initialize and control the session, and perform the

switching between the modules.

B. TYPING THE COMMANDS

A "TTPS" command may be typed entirely on one line, or

broken into a sequence of subccmmands. Thus, if you type

only the name of the command, the system will keep asking

for the remaining information until it is able to execute

the command properly, or until an error was detected.

However, if during this interaction you wish to abandon the

request you may do it by pressing the escape key in place of

the next input.

Example:

Suppose you started a load operation by typing RESTORE,

the system will ask you for the name of the file, but for

some reason (perhaps you forgot the name of the file and you

want to check the directory), then instead of inputing the

name press the escape key. The system will automatically

disregard the command.

All the commands and their arguments can be typed usinj

either upper case or lower case letters or a combination of

both.

119

the content of the roct to "Written". Thus, the user can

reactivate it when he needs to, by inserting at the aE[pro-

pridte place in the rule list a rule which looks like:

"writte:n x m ==> write x m"

The "display" rule is similar to the "write" rdle but its

second son may be a whole subtrEe which must be uniarsed and

displayed; then the reguest is disabled by replacinj

"display" with "displayed".

1

'18

Both solutions seem to lack flexibility and

generality, since they will not work for the variaLle names

and numbers larger than 20. Also strings will Le stored in

20 characters long nodes, thus resulting in waste space due

to internal fragmentation, and in an increasing complexity

in the rules which handle these strings. For all these

reasons we suggest the implementation of a more general

solution, which consists of representing the data stored in

the tree nodes by linked lists. Thus, the content of each

node is variable rather than fixed like it is presently

implemented.

b. built-in rules

In order to imprcve the performance of the

system, we think it is necessary to include more built _in

rules, such as rules for mathematical functions (e.g. square

root, exponentiation etc.) , rules for list manipulation

(e.g. first, rest, null etc.), and rules for input/output

functions (e.g. open, read, write, display). In fact these

rules are now being implemented. The open rule (1) takes a

subtree whose root contain the name of the "open template",

whose left son contains either "input" for input file or

"output" for output file, and whose right son contains the

name of the file to open, (2) opens the file, (3) and

disable the reguest by replacing "open" with "opened". The

"read" rule takes a subtree whose root is "read template

name" (i.e. "read") and whose left and riqnt sons contain

respectively the name of the file, and a variable name, (2)

replaces it by the input wh±ch can be a constant value or

whole subtree. The "write" rule (1) takes a subtree whose

root contains "write" (i.e. the name of the write template),

and whose left and right sons ccntain respectively, the name

of the output file, and the value to be written, (2)

displays it, and (3) disables the write roquest by changing

117

case P11 if

v X W vX

PLi if PLi if

eq ual x nextcase egual x PLi if

A \w v\ equal y w

--............... I----
PLi _if -- >PU _if

e ual x lastcase e ual last_if

v m n y 7 m equal y

m n

--- --------------------------- I
writepu

xI

Figure 4.3 Abstract Transformation Rules for Case.

6

An alternative solutioL would be to define a

template for each string largier than 20 characters, and then

use the template naME, in the rules and the programs, to

reference these strings.

116

firstcase CASE v OF

m: x;

w
==>

IF v = m THEN

x;

ELSE N.

aidlEcase : IF v = M THEN

X;

ELSE n: y;

w

==>

IF v = m THEN

x;

ELSE IF v = n THEN

Y;

ELSE W

lastcase : IF v = m THEN

x;

ELSE n: y

end;

IF v = m THEN

x;

ELSE IF v = n THEN

write r WRITELN (s)

PUT SKIP LIST (s)

Figure 4.2 Concrete Transformation Rules for Case.

41

ii o •.

0

case CASE OF

----- - --- - --- -

nextcase

lastcase --

END; (* case of *)

pl1_if IF-- THEN

ELSE --

pl1_lastif: IF __ THEN

writeln :WRITEIN (-

put PU SKIPLIST -)---put :PUT SKIP LIST (-

equal :--- = --

Figure 4.1 The Teplates for Case Transformation.

3. Limitations and Constraints

a. Constants, and variable naming

In "TTPS" the length of constants and variable

names is limited by the size of the data we can store in a

tree node, which in the present case is limited to 20 char-

acters. Thus, in order to be able to handle strings longer

than this number, the user must define a structure which ho

can call "concatenation". This structure concatenates

strings of 20 characters to obtain larger ones.

114

After transformation we will oltain the following sequence

of PL/1 if statements:

IF country = 1 THEN

PUT SKIP LIST ('country is Tunisia');

ELSE IF country = 2 THEN

PUT SKIP LIST ('country is France');

ELSE IF COUNIRY = 3 THEN

PUT SKIP LIST ('country is Greece');

ELSE IF COUNTRY = 4 THEN

PUT SKIP LIST ('country is USA');

This transformation is done using the templates listed in

Figure 4.1, the concrete rules shown in Figures 4.2 and

their corresponding abstract forms shown in Figure 4.3.

Note that the source structure can be a program written in a

user defined form which can be transformed to a given

language before being compiled.

d. code generation

In this application we use the rules to generate

the code. That is, the analysis part of the rule represents

the source program tree, and the synthesis part represents

the instructions which will be generated when a match occurs

between a program subtree and the analysis part of a rule.

e. system programming.

In this application we use the rules to trans-

form a given tree structure into a system call, which then

can be executed to return whatever result, which will

replace the original subtree. For example:

read file m ==> call i/o_routinel input value

This rule, when applied, will causes the execution of

"i/o_routinel", and the replacement of the subtree 'read

file mi" by the inputvalue.

1 3

Using these templates we can write the following expression:

((a * (- c)) + d)

The abstract tree which represents tnis expression is as

follows:

add

mult d

a sub

bZ c

Now, ly replacing the old templates by the following ones:

add +

sub

mult *

when unparsed, the same tree will be printed as:

a b c - * d+

Observe that, this translation does not require any rule.

As another example cf a structure transformation

which reduires the application o. transformation rules, we

can transform a Pascal case ccnstruct into a sea7uence of

PL/1 if statements. For instance, if we have the following

case construct:

CASE country of

I: WRITELN ('country is Tunisia');

2: WRITELN ('country is Frar.ce');

3: WRITELN ('country is 3reece');

4: WRITELN ('country is USA')

END; (* case of *)

112

I:)i::.-U

-p p. •t - i .

a. simulation of a Syntax Directed Elitor

Using the templates we can define the jrammar

for the legal syntax, and then using the program editor we

can construct the program tree hy reguesting the appropriate

template for each type of construct. When unparsed and

printed this abstract tree will give the text of the

program, which then can be used normally as a program text.

For example, the template which describes the structure of a

Pascal "for loop" would be written as:

tempfor : for -- :=-- to --

b. formatting programs

This application has been already discussed; it

consists of using the templates to describe how the program

is to be formatted. This include indentation, spacing

between lines and words, comment insertion, and word substi-

tution. However, without a jarser only programs written

using the "TTPS" program editor can be formated. Thus, in

order to be general we need to add a parser capable of

transfcrming a unformatted program text into abstract tree,

and then by supplying the appropriate set of templates we

can have the same program unparsed and printed in its new

form.

c. structure transformation, and string translation

Given with the apiropriate templates and if

necessary the rules, the system is able to transform any

program structure to another one, including string transla-

tions. For example, suppose we have the following set of

templates:

add : (-- +

sub : (----- .--

mult : (-- -

111

In addition "!ITPS" provides an appropriate environ-

ment for developing functional programs. As explained in

[Ref. 1], functional programming is important because it

encourages one to think at a higher level of abstraction, it

provides through its large units (i.e. trees in our system)

a methcd for programming large, parallel computers, and it

provides an adequate framework for AI applications.

We believe that the majcr difference between conven-

tional programming systems and "TPS" is that the first

category provides primitive operations and the user has to

use them to construct his program and define its semantic

behavior through more complex structures (e.g. procedures,

and functions), with all the related problems of parameter

passing and side effects. In conventional programming

systems we have two separate entities; the programminj

language and the program which represents a specific

instance which may or may not fit well in the language

framework. Therefore the user has the added burden of

adapting the problem solution to the features available in

the language. On the other hand, in TTPS these two entities

are inseparable because the language framework is designed

to solve the problem; therefore the user does not have to

deal with external constraints. Also, the rules are inde-

pendent from each other, thus the user does not have to

worry about side effects, and feature interaction. These

properties makes "TTPS" appropriate for a wider class of

applications.

2. Other Specific Ap lications

Along with this classes of functional and conven-

tional applications, "TTPS" can be used for other specific

applications such as:

110

classical problems which might result from the adaptaticn of

the solution to the limited pcssibilities offered by the

programming language. On the other h- ., in "TTPS" we adapt

the language to the solution, since we create it for the

soluticn. Furthermore, as we have seen, the language can

even be changed at any step of the programming development

process. There is nc doubt this flexibility and power will

have positive effects on the entire progra±m life cycle

including coding, debugging, and maintenanjce; and will

result in a reduction of the time required to produce a

correct program.

The third aspect concerns the programming style.

With "TTPS" the user is liberated from being tied to a

unique programming style. Instead, it allows him to define

the style he wants, which can be a functional type, a

conventional type, a combination of both, or his own

specific style.

The templates and the rules represent an elegant,

easy, and natural way to define the syntax and the semantic

behavior of the programming system. With the rules we can

simulate every kind of behavior including those of the

constructs defined in conventional languages such as while,

for, case, and if constructs. All this is done using one

type of rule which maps trees into trees, thus providing a

uniform, clear, explicit, and natural way of reasoning.

These properties make it simple for the user to

reason about the program behavior at a high conceptual

level, since with trees he can define very large computa-

tional units, which can be processed in parallel. However,

when the user desires, these trees can still represent small

units such as assignment statements, or memory allocation.

By using larger units, programs can be constructed faster.

Also, the debugging process will be easier since with these

large units, and with the assistance of the system, the user

can quickly locate the origin of the bug.

109

B. SYSTEM EVALUATION AND USES

1. General Aplications

So far we have been mcstly discussin the design

aspects of the programming environment. In the rest of this

chapter we will focus on the programming system itself.

That is, we will try to evaluate its advantages and its

limitations. Also, we will make some suggestions about the

possibility of extending its capability and improving its

performance.

Our approach in evaluating "TTPS" (Tree

Transformation Programming System) will be based on a

comparison between "TTPS" and conventional programming

systems. This analysis will be in terms of friendliness,

* appropriateness for a wider class of applications, and time

required to produce a correct program to solve a given

problem.

In "TTPS" friendliness is achieved in many asjects.

The first aspect has been already discussed and concerns the

facilities provided by the programming environment tools

with the extensions we suggested.

The second aspect concerns the programming language.

"TTPS" allows the users to have a wide variety of high

level, formatted natural languages. Unlike with conven-

tional programming systems, the user is not required to

learn and master a formal language. Instead, he will define

his own language framework reflecting his own perception of

the syntactic and semantic aspects of his problem and

adapted to his own style. This freedom has the advantage of

eliminating the time required to learn and master a fcrmal

language before being able to use it. Also, it enables the
I

user to tailor the language framework to be the minimum

necessary to solve his problem since he will define only the

templates and the rules he will need, thus eliminating the

108

I

The starting point will indicate the place from

where the editing will begin. It can be one of the

following points.

FIRST : start from the beginning of the list

LAST start at the end of the list

TEMPLATENAME : start at te given template

NCT SPECIFIED: start from the current template

The editing session will begin by displaying the

template which corresponds to the given starting point.

a. display the next teoplate (RETURN KEY)

By pressing the return key you will get the

display of the next template cr a message indicating that

the end of list is reached.

b. insert a new template (INSERT)

The new templates kill be inserted before the

current template. However, if the list is empty the system

will automatically start the irsertion at the beginning of

the list. Insertion may be done at the end of the list when

the message "end of list reached" appears on the screen.

Each new template must have a name and a body.

Thus, the system will give the Frompt to type the name wahich

may include from one up to ten characters. Next, it will

ask you to start typing the body of the template which is a

combination of words and place holders signified by two

successive minus signs (-). The template text is ended by

the escape key. The end of the insertion is also indicated

by the escape key entered in the place of the name.

c. deleting a template (DELETE)

6 This command allows the deletion of the template
currently displayed. After the deletion, the next temrlate

will be automatically displayed and then becomes the current

122

K '

one. Eventually the message "End of list" will appear when

the template deleted happens to be the last one in the list.

d. search (TEMPLATE NAME)

During the editing cf a list, it is possible to

search for a given template by typing its name. When found

it will be displayed and subsequently become the current

one. On the other hand, if no template with the given name

was found, the system will send an error message and return

back to the previous situation.

e. ending the editing session (ESCAE)

By pressing the escape key you exit from the

edit mode, but the control remain in the template editor.

4. Direct Insertion (INSERT PLACE OF INSERTION)

This is an additional facilities which allows direct

insertion without being in the editing mode. It can be used

when you need to make an insertion only, and at a particular

place of the list. The place can be:

FIRST insertion at the beginning of the list

LAST : insertion at the end of the list

TEMPLATE NAME: before the given template

NCT SPECIFIED: before the current template of that list

5. Savinq List (SAVE FILENAME LISTNAME)

This command have the effect to save the given list

on a disk file and assign to that file the given name.Both

names can be omitted in which case the function will save

the current list and assign its name to the created filE.

6. Restoring a List (RESTORE FILENAME LISTNAME)

This command loads the specified file with the given

listname. When no listname is given the restore function

123

will autcmatically assign to the list the name of the file.

However, you should be aware of two important things

concerning what happens when the given file does not* exist

and when there is already a list in the memory with the

given name:

Case 1

When no such file is fcund, the system will abort

the job and subsequently the ccntent of the memory will be

lost. Therefore it is better practice to save things which

are created or modified during the session, before you issue

a restore command unless you are sure you have given the

correct file name. For this reason the system will send a

warning reminding you of this fact, and will give you a

second chance to verify the input file name, and in ccnse-

quence either correct it and ccnfirm the request, or abort

it for more verifications.

case 2

When the given listname is already assigned to an

existing list, the system will automatically ask you to

confirm the overwrite of the old list or give another name

or simply abandon the request by pressing the escape key.

7. Removinq a List (REMOVE LISTNAME)

This command allows to remove a list from the memory

and free the occupied space. However, when the list to be

removed was created or modified during the same session but

not saved, the system will send a warning message and give

you the opportunity to abandon the reiuest and save the list
cr confirm it.

Like the other commands,if the listname had not been

specified, the system will take the current list as default

value.

124

.!

iK i

8. Merqinq two Lists (MERGE LISTNAME1 + LISTNAME2 =

LISTNAME3)

This command allows the concatenation of the second

list with the first list yielding a third list. as usual,

the current list will be taken as default value for any one

of the three lists if they are not specified. Thus, at the

limit it is possible to concatenate a list with itself.

Listname3 can be either a new list or an existing one. The

latter case will be treated like an overwrite.

Note that here we have a situation where you may

have duplicate templates in the same list. When that

happens the system will notify you by giving the names of

all the duplicates found, but it is your responsiLility to

delete the one you don't need or give different names.

9. Listinq the Template Lists (LIST)

When you type this command the system will display a

listing of the names of all lists currently in the memory,

and the number of templates each list contains. "nil" will

be given when there is no list in the memory.

10. In_quire About the Current List and Template

(CURRENT)

By typing this command you will get a message indi-

cating the name of the current list and the current template

within this list.

H. USING THE RULE EDITOR (RULEEIT)

Like the template editor, the rule editor jrovides

facilities to manipulate individual templates and lists ofID
rules as a whole entity.However,now we can have only one

list in the memory. Thus, we will not have the notion of

current list, but we still have to keep track aLout the

current rule.

125

In general, we manipulate lists of rules in the same way

we do with lists of templates. There are, though, some

differences resulting from the fact that we have only one

list. Also, now we have to deal with two different forms of

the rules: the concrete form and the abstract form.

In the rest of this section we will introduce the

different commands to use the facilities provided by the

rule editor. However, we will simply mention the ones that
have been described in the tem plate editor and spend more
time with the description of the new commands.

1. Built in Rules

Like builtin templates, builtin rules are an inte-

gral part of the system which can be applied to the program
like the other rules. The synthesis part of these rule can

be either a single constant value or an error type.

Built in rules can not be accessed by the rule

editor, therefore we will mention them here.

a. rules for arithmetic operations

These rules take two operands, verify if they

are numbers and produce the result. The list includes rules

for the addition (+), the multiplication (*), the subtrac-

tion (-), and the division (/).

b. rules for Boolean operation

These rules take two operands, verify if they

are of the same type (i.e both numbers, or both literals),

and produce a Boolean value ("true or "false). The list

includes rules for eguality greater than and less

than reg rs

126

I

c. evaluate rule

This rule will. take its unique argument and
evaluate it to return a single value which may be either a

number, or a nonnumeric literal. Note that numbers include

integers and reals. Numbers are written as they are. On

the other Land nonnumeric literais must be preceded by a

double guote ("

2. Open a Rule List (OPEN IIS TNA.E)

This command will create a new list, or if the list

exists, it will reintialize it. The second case may require

the confirmation of the regjuest if the old list has been

changed during the session but not saved yet.

3. Editina a Rule List (EDIT STARTING PLACE)

This function works exactly like the one described

in the template editor. It provides the same operations

(INSERT, DELETE, DISPLAY, AND SEARCH). Of course, writing a

rule is different than writing a template.

Each rule comprises three parts:The name of the

rule, the analysis part, and the synthesis part. The name is

entered first and may include from 1 up to 10 printable

characters. When finished the system will ask you to enter

the analysis part, and then the synthesis part. Both parts

are constructed using the basic tree structure defined by

the templates.

The best way to understand how a rule is entered is

to jo through an example. Hoever, It will help if you

think in terms of tree structure rather than in terms of

concrete structure, because when you write the rule you are

in fact building the tree at the same time, or more precisly

the system prepares the tree and you fill the nodes with

constants, variables, or template names which will cause the

creation of new subtree.

127

0I

Example: Suppose we have already defined the following

templates:

evaltemp = eval --

iftemp if -- then - else--

factemp : fact --

In terms of the tree the, first template tells us

that an eval subtree will have one son,the second template

tells us that an if subtree will have three sons,and the

last template tells that a fact (factorial) subtree will

have cne son.

Vow suppose we want to write the following rule:

eval fact n ==> eval if n=O then 1 else n * fact n - 1

the abstract tree which corresponds to the above concrete

rule will look like

temeval ==evaltemp

tempfact iftemp

n-1

n 0 n t empfact

Now, how do we enter the rule so the system can Luilt the

above tree? Since we don't have a parser to discover the

structure from the ccncrete form, we will use the templates
to tell the system which structure we need.Templates are
requested by their name.

Figure 3.9 represents the entire process for

entering the above rule. The inputs are written in capital

letters while the system output are written in small letter.

128

Iq

rAr

L I

rule name: FACTRULE

analysis part

EVALTEMP < eval la >
<la> FACTEMP < fact 2a >

<2a> N

synthesis part

EVALtemp < eval la >

<la> IFTEMP < if 2a then 2b else 2 c >
<2a> = <3>N < 3a = 3b >

<3a> N
<3b> 0

<2b> 1

<2c>0 < 3a * 3b >

<3a>N

<3b> tempfact < fact 4a >

<4a> - < 5a -5b ><5a> n

<5b> 1

rule inserted

Figure A.1 Example fcr Inserting a Rule.

Notice that when we request a template the system

will automatically display the format of the template with

the place holders indexed. The number in the index indi-

cates the level of nesting which corresponds to the height

of the tree. On the other hacd, the letter indicates the

position, from left to right, within the template which

correspond to the position of the son node of the suhtree.

The last remark concerns the templates. As you

noticed, we did not need to define the templates =, *, and

-, because we used the built-in templates.

129

0Q

4. Direct Insertion (INSERT PLACZ OF INSERTION)

'This command allows direct insertion without Leing

in tLe edit mode. Basicly it worKs like the insertion from

the edit mode, except now you can specify explicitly the

place where to start the insertion. The place of insertion

can be first, last, a template name, or if omitted, the

insertion will be before the current rule.

5. Savinq a List (SAVE FILENAME)

This command allows one to save the abstract torm

of the rules. When the filename is not specified the system

will assign the name cf the list to the created file.

6. Printinyj a List on a Disk File (PR INT FILENA.E)

This function will send a pretty printing of the

unparsed rule to a disk file. Basically it works like the

save function except, as we said, each rule is unparsed

according to the format given by the templates. For
example, having the following tree as part of an abstract

rule:

iftempiate

condition action alter ative

with the following template:

iftemplate: if-- then

else

130

the abstract tree will give the following concrete form:

if condition then

action

else

alternative

However, if the system can not find the appropriate

template, in our present case "iftemplate", he will simply

print in preorder the subtree Ereceded by a question mark.

Thus, the above subtree would be printed as:

? iftemplate condition action alternative

7. Restoring a List (RESTORE FILENAME LISTNAME)

This command allows one to load into the memory

files cortaining only abstract rules. Thus, concrete rules

cannot be loaded because the system will not be able to

parse them. An error will occur when an attempt is made to
restore files which dc not have the adequate structure.

For the rest of the details on this command refer to

RESTORE in the template editor.

8. Inquire About the Current Rule (CURRENT)

When you type this command the system will give the

name of current rule, or "nil" when at the end of list.

9. Endinq the Rule Editor (XIT)

When you type exit you terminate the template editor

and return back to the user interface where you can select

another module or simply quit the system.

131

I. USING THE PROGRAM EDITOR

In "TTPS" a program is treated like a rule except that

programs include only one part. Thus, we will use the same

facilities provided in the rule editor with rule list

becoming program list, and with the rules replaced by

programs. Thus, it is possible to have several programs in

the same list, each one treated by the program editor like a

rule is treated by the rule editor.

For more information about how to use the different

facilities refer to the rule editor section.

J. USING THE INTERPRETER (INTERPRET)

As we said earlier, this nodule is run by the command

INTEPPRET. Once it takes control it will give you the

promet to interpret your programs. The interpretation is

started by typing the name of the program, which may be

followed by the option RULES or simply R. When this option

is specified the system will display in sequential order the

rules applied to the program. At the end it will give the

number of rules successfully applied to your program.

When the interpretation is completed you will have the

opportunity to save or print the result list called

"T.RESULT" on a disk file by an automatic switch from the

interpreter to the program editor. You may decline the

offer by simply giving NO as an answer to the question

displayed at the end of the interpretation.

Notice, that after you save or print the result the

control will return back to the interpreter so you can

request the interpretation of the same program or an other

one from the program list.

132

1. Exit the Interpreter (EXIT)

Like the other modules you exit the interpreter by
the command EXIT. This will give the control back to the

user interface.

I

I

133

LIST OF RETERENCES

M. acLennan, Bruce J. Functional PryEramoar.
lethodolo g~: The rXY and -practic0. -T3Te pU 'I~
NddIsoENesley.

134

BIBLIOGEAPHY

Aho, A. V., Johnson S. C. "Optimal Code Generation for
Expression Trees" JACM 23, 1956.

Center for Research in Computing Technology, Havard U.,
Cambridge, Mass., Technical Report 9 - 73, Tree
Transductions and Families of Tree LanQaaqtes, Ly E. Ba-.r,

Backus, J., "Can Programming be Liberated from the Von
Newmann Style? A Functional Style and its Algebra of
Programs" Communications of the ACi, volume 21 number 8,
August 197

Barrett, W. A., Compiler Construction: Theory and Practice.
Science Reasearci-J socia tes 7- 9---

Computinq Laboratory, U. of Newcastle Upon Tyne, England,
Tecnnical Report 50; Transformational Grammars ror Languajes
and Compilers, by F. l7- ,Ff-7T7.--- --

Kiliv J F., "An Interactive Design Nethodology for User
Frief.Aly Natural Language" ACM Transactions, March 1984.

Kron, H. H Practical Subtree Transformational Grammars.
Master Thesis, U -- 7.-CaIfTG , T77 -------

Kron, H. H., Tree Templates and Subtree Transformational
Grammars. PH. D.1irse-fitin.-U_ -nCT 5hia,

Waters, R. C., "The Programmer's Apprentice:Knrowledge Eased
Projram Editing" IEEE Transacticns, January 1932

135

S

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, code 0142 2
Naval Postqraduate School
Monterey, alifornia 93943

3. Department Chairgan Code 52 2
Department of Ccmputer Science
Naval Postgraduate School
Monterey, Califcrnia93943

4. Computer Technology Curricular Office 1
code 37
Naval Postgraduate School
Monterey, California 93943

4 5. Professor Bruce J. MacLennan, Code 52 ml 1
Department of Computer Science
Monterey, California 93943

6. Professor Gordon H. Bradley, Code 52 bz I
Department of Ccmputer Science
Monterey, California 93943

7. Ministere de la defense nationale I
Direction du Personnel et de la Formation
1, bd Bab M'Nara Tunis
Tunisia

8. Capitaine Chok M. Bechir 1
Ministere de la Eefense Nationale
DPPI
1, Bd Bab M'Nara Tunis
Tunisia

9. Lt.col Abdoulaye Dieng 1
Etat Major des Armees
BP 4042 Dakar
Republic of Senegal

10. Ma or Harilaos Papadopoulos
Hellenic Air Force General Staff
Agia Barbara - Aigaleo
Ahens- Greece

11. Captain Nasser Alsubaiei
SMC 1096 NPgS
Monterey, Califcrnia, 93943

136

FILMED

* 5-85

* DTIC

